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A strategy for characterizing the learning problem
Characterizing tonal maps

Defining tonal maps
The learnability of tonal maps

Overview

1. What is the setting of the learning problem for learning
phonological categories?

2. What structure might there be in the hypothesis space
for learning phonological categories?

I Model system: lexical tones in tonal languages
I Methods:

0. Theoretical inquiry
1. Cross linguistic fieldwork
2. Psychological experiments
3. Computational modeling
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A strategy for characterizing the learning problem
Characterizing tonal maps

Defining tonal maps
The learnability of tonal maps

The target of learning: a vowel map in 2-D formant space

Figure: Peterson and Barney (1952): An
English vowel map in 〈F1SS ,F2SS 〉 space

〈F1 SS ,F2 SS 〉 Vowel

〈240, 2280〉 {/i/}
〈460, 1330〉 {/Ç/}
〈475, 1220〉 {/U/}
〈686, 1028〉 {/A, O/}
〈400, 3500〉 {/i/}

...
...
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A strategy for characterizing the learning problem
Characterizing tonal maps

Defining tonal maps
The learnability of tonal maps

The target of learning: what are tones?

{Data} Learner−−−−→
{Phonological maps}
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A strategy for characterizing the learning problem
Characterizing tonal maps

Defining tonal maps
The learnability of tonal maps

Defining phonological maps

Phonological maps:
{sequences of phonetic parameter vectors} →

{sets of phonological categories}

I Generalization from finite sample to infinite set in learning

I Connected regions contain too many points to be
enumerated

I Ambiguity ⇒ probabilistic distribution of phonological
categories over phonetic spaces (Pierrehumbert 2003)
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A strategy for characterizing the learning problem
Characterizing tonal maps

Defining tonal maps
The learnability of tonal maps

Defining phonological maps

Phonological maps:
{sequences of phonetic parameter vectors} →

P1 × P2 × · · · × Pc

I Generalization from finite sample to infinite set in learning

I Connected regions contain too many points to be
enumerated

I Ambiguity ⇒ probabilistic distribution of phonological
categories over phonetic spaces (Pierrehumbert 2003)

〈F1 SS = 686,F2 SS = 1028〉 7→ {p(/A/) = 0.45, p(/O/) = 0.55}
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A strategy for characterizing the learning problem
Characterizing tonal maps

Defining tonal maps
The learnability of tonal maps

Characterizing phonological maps

Key questions:

1. What kinds of phonological categories are to be represented
in the range of the map? (Here: phonemes, by stipulation)

2. What is the phonetic parameter space—the space of phonetic
parameters—for the phonological categories?

3. What are properties of the distribution of the phonological
categories over the phonetic parameter space?
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A strategy for characterizing the learning problem
Characterizing tonal maps

Defining tonal maps
The learnability of tonal maps

Methodological abstraction: which parameters?
Reality: Probabilistic distribution of phonological categories
over phonetic spaces

I Model: partition of set of phonological categories over
phonetic spaces

I Tonal identification (humans), hard classification algorithms
(machines)

I Example: A two tone tonal inventory, e.g. {H,L}

Duda, Hart and Stark (2001)

I Probability distribution p(x|ω) over x,
x = mean fundamental frequency (f0)

I Two classes: ω1 = L, ω2 = H
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A strategy for characterizing the learning problem
Characterizing tonal maps

Defining tonal maps
The learnability of tonal maps

Phonological maps are non recursively-enumerable
Phonological maps are defined over real-valued parameters

Reg CFFin non!RERECSMG

Figure: The Chomsky hierarchy of formal languages
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A strategy for characterizing the learning problem
Characterizing tonal maps

Defining tonal maps
The learnability of tonal maps

Can we characterize tonal maps as being feasibly learnable?

Figure: Map in a 2-D parameter space

I In phonetic space: each
parameter defines a dimension
and can take a real value

I Potentially an infinite number
of parameters, each with a
potentially infinite range of
possible values

Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9/ 38



A strategy for characterizing the learning problem
Characterizing tonal maps

Defining tonal maps
The learnability of tonal maps

Can we characterize tonal maps as being feasibly learnable?

Figure: Map in a 3-D parameter space

I In phonetic space: each
parameter defines a dimension
and can take a real value

I Potentially an infinite number
of parameters, each with a
potentially infinite range of
possible values

Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9/ 38



A strategy for characterizing the learning problem
Characterizing tonal maps

Defining tonal maps
The learnability of tonal maps

Structure permits feasible learning even in infinite spaces

But comfort from the finiteness of the space of
possible grammars is tenuous indeed. For a
grammatical theory with an infinite number of possible
grammars might be well structured, permitting informed
search that converges quickly to the correct
grammar—even though uninformed, exhaustive search is
infeasible. And it is of little value that exhaustive search is
guaranteed to terminate eventually when the space of
possible grammars is finite, if the number of grammars is
astronomical. In fact, a well-structured theory
admitting an infinity of grammars could well be
feasibly learnable, while a poorly structured theory
admitting a finite, but very large, number of possible
grammars might not.
(Tesar and Smolensky 2000: 3)
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Figure: Map in a 3-D parameter space

I In phonetic space: each
parameter defines a dimension
and can take a real value

I Potentially an infinite number
of parameters, each with a
potentially infinite range of
possible values

I Complex shapes/distributions
can make maps in even 2-D
spaces not feasibly learnable

⇒ there must be restrictive
structure in the hypothesis
space
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Characterizing structure in the hypothesis space

1. Any characterization of structure is conditioned on the
parameter space in which the tonal maps are defined

⇒ Need to do phonetic studies of relevant phonetic
parameters for defining tonal maps

2. Need a way to diagnose feasible learnability from
characterized structure

Mathematical complexity metric: Vapnik-Chervonenkis (VC)
dimension (Vapnik 1998, Vapnik and Chervonenkis 1971)
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Cross-linguistic tonal language sample

Language Area Tonal inventory

Bole Nigeria
Ă
£, Ă£ (H,L)

Mandarin Beijing
Ă
£, Ę£, ŁŘ£, Ď£

Cantonese Hong Kong
Ă
£, Ă£, Ă£, Ą£, Ę£, Ę£

Hmong Laos/Thailand
Ă
£, Ă£, Ă£, Č£, Ć£, Ą£, Ę£

I Languages chosen for diversity in level/contour distinctions
and voice quality contrasts

I Multiple speakers (6M/6F for all but Bole (3M/2F))

I All legal bitone combinations recorded sentence-medially
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Temporal resolution: how many samples? (I)

Dense sampling Coarse sampling

Time

f0

● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

Time

f0
●

●

●

●

Each sampled point could contribute to complexity in tonal map!
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Temporal resolution: how many samples? (II)

Dense sampling

I Gauthier et al. (2007): 30 samples/syllable (1 sample/6 ms)

I Automatic speech recognition: 1 sample/10 ms

Coarse sampling

I Linguistics: Chao (1933, 1968), International Phonetic Alphabet
Ă
£,Ę£,ŁŘ£,Ď£, 3 samples/tone

I Automatic speech recognition
I 3 - 5 samples/tone: Qian et al. (2007): Cantonese; Wang and

Levow (2008), Zhou et al. (2008): Mandarin
I Tian et al. (2004): Higher tonal ID accuracy with 4

samples/tone than 1 sample/10 ms (Mandarin)

Hypothesis: Good tonal category separability can be maintained
under coarse temporal sampling of phonetic parameters.
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Human perception experiments: stimuli
I Cantonese tritones: nonce 3-syllable phrases built from syllables

in the lexicon

I First and third syllables held fixed:
< waiĂ£, {wai

Ă
£, Ę£, Ă£, Ą£, Ę£, Ă£},matĂ£ > .

Tritone Gloss
< waiĂ£, wai

Ă
£,matĂ£ > fear power clean

< waiĂ£, waiĘ£,matĂ£ > fear appoint clean
< waiĂ£, waiĂ£,matĂ£ > fear fear clean
< waiĂ£, waiĄ£,matĂ£ > fear surround clean
< waiĂ£, waiĘ£,matĂ£ > fear great clean
< waiĂ£, waiĂ£,matĂ£ > fear stomach clean

I Syllables identified with orthographic characters

I Some characters may be more frequent than others:
Ę£ > Ą£ >

Ă
£ >> Ę£ > Ă£, Ă£ (based on corpus count of Mandarin

cognates, Da (2004)
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I Syllables identified with orthographic characters

I Some characters may be more frequent than others:
Ę£ > Ą£ >

Ă
£ >> Ę£ > Ă£, Ă£ (based on corpus count of Mandarin

cognates, Da (2004)
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Human perception experiment

I Stimuli: Cantonese tritones,
< waiĂ£, {wai

Ă
£, Ę£, Ă£, Ą£, Ę£, Ă£},matĂ£ > from 5 speakers (3M, 2F)

I Methodological inspiration: Multiple phoneme restoration in
interrupted speech (Warren 1970)

I Manipulated variable: sampling resolution
(2, 3, 5, 7 samples/syllable, intact)

I Task: 6-alternative forced choice orthographic identification of
second tone in tritone

I Participants: 39 native Cantonese speakers, tested in Hong
Kong and Los Angeles
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Stimuli example: waveform/spectrogram

. [Intact tritone]
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Stimuli example: waveform/spectrogram

. [7 samples per syllable]

Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 19/ 38



A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Stimuli example: waveform/spectrogram

. [5 samples per syllable]
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Stimuli example: waveform/spectrogram

. [3 samples per syllable]
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Stimuli example: waveform/spectrogram

. [2 samples per syllable]
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Tonal ID accuracy maintained with coarse resolution
Tonal ID accuracy well above chance
even down to 2 samples/syllable!

Resolution

P
er

ce
nt

 o
f c

or
re

ct
 r

es
po

ns
es

0

10

20

30

40

50

60

70

samp2 samp3 samp5 samp7 intact

Resolution Percent correct
samp2 52.54 (2.41)
samp3 60.51 (2.76)
samp5 64.13 (2.83)
samp7 66.38 (2.91)
intact 67.46 (2.90)
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Computational modeling for insight into experiment

I What were listeners listening to?

I Effects of particular task/stimuli?

Computational modeling allows explicit and tradeable
assumptions.

I Assume: mean f0 values extracted from each sample, for 2-7
samples per syllable

I Extracted using implementation of RAPT pitch tracker (Talkin
1995)

I Assume: no lexical bias
I Uniform prior (all tonal categories equally likely)

I Ask: How accurate is tonal identification by machine?
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Computational modeling: parameterization of data
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I Standardized data:
per-speaker z-scores
for log transformed f0
values (Levow 2006)
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Computational modeling: support vector machines

Bennett and Bredensteiner (2000), Vapnik (1995)

1. Given labeled training data,
e.g. << 200, 210, 224 >,

Ă
£ >

2. Draw convex hull around
data from a given category

3. Find separating hyperplane
maximizing margin between
convex hulls

4. Use separating hyperplane to
classify test data (unseen
data): train on 4 speakers,
test on 5th, average results
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Support vector machine classification results

I SVM classification accuracy ≈75% for all conditions

I Accuracy with as few as 6 real values not statistically different
from accuracy with 69
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Support vector machine classification results

I SVM classification accuracy ≈75% for all conditions

I Accuracy with as few as 6 real values not statistically different
from accuracy with 69

Sufficiency of coarse temporal resolution in humans and
machines hints at structure in the class of tonal maps
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Linear discriminant analysis for dimensionality reduction
Don’t project there! Project here!

(Hastie, Tibshirani, and Friedman 2009)

I Project onto axis to maximize ratio of between-class to
within-class scatter

I Between-class scatter: roughly, distance between class means

I Within-class scatter: class variances
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Cross-linguistic computational modeling for sampling
resolution example: Bole, log f0 values

Linear discriminant 1, 2 f0 samples
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Linear discriminant 1, 3 f0 samples
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Linear discriminant 1, 10 f0 samples
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Little difference in overlap between H/L
from 2 to 10 f0 samples
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Structure in the class of tonal maps

What do tonal maps in the studied languages indicate about
potential structure in the class of tonal maps in natural
language?

Tonal concepts in low-dimensional spaces for single speak-
ers for languages studied are near-linearly separable
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Mandarin single speaker space: log f0, 3 values
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

Cantonese single speaker space: log f0, ∆f0, 2 values each
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

White Hmong single speaker space: log f0, 10 values
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

VC dimension: definition by example — rays in R

rθ

x
θ

rθ = {x ∈ R|θ ≤ x}

rθ =

{
1 if θ ≤ x
0 otherwise

r∞ = {} ∀x ∈ R (empty ray)

Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 34/ 38



A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

VC dimension: definition by example — rays in R
Given sample S ⊆ R, class of tonal maps T

if {S ∩ T |T ∈ T } = ℘(S), then S is shattered by T
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rθ
x
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

VC dimension: definition by example — rays in R
Given sample S ⊆ R, class of tonal maps T

if {S ∩ T |T ∈ T } = ℘(S), then S is shattered by T

x
−4 −3 −2 −1 0 1 2 3 4

S |S| ℘(S) T for T ∩ S Shattered?

{} 0 {} r∞ Yes

{1} 1 {}, {1} r∞, rθ≤1 Yes
{0, 1} 2 {}, {1} r∞, rθ≤1

{0, 1} rθ≤0
{0} ?? No!
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

VC dimension: definition by example — rays in R
Given sample S ⊆ R, class of tonal maps T

if {S ∩ T |T ∈ T } = ℘(S), then S is shattered by T

V C(T ) = max{|S| : S is shattered by T } = 1
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

VC dimension: definition by example — rays in R
Given sample S ⊆ R, class of tonal maps T

if {S ∩ T |T ∈ T } = ℘(S), then S is shattered by T

What if T consisted of the union of a finite number of
intervals on R?

[0,1][-4,-1]
x

−4 −3 −2 −1 0 1 2 3 4

V C(T ) = max{|S| : S is shattered by T } infinite
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A strategy for characterizing the learning problem
Characterizing tonal maps

Temporal resolution and parameter spaces
Learnability and structure in the hypothesis space

VC dimension and feasible learnability

Finite VC dimension is a criterion for feasible learnability

I VC dim of ellipsoids in Rd : (d2 + 3d)/2 (Akama et al. 2011)

I VC dim of arbitrary convex polygons in Rd ∀d is infinite
(Blumer et al. 1989)

I VC dimension is applicable to real and discrete spaces

I VC dimension of constraint ranking/weighting hypothesis spaces
for OT and HG is finite (Riggle 2009, Bane et al. 2010)
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The VC dimension of linear half spaces is finite

Figure: VC dimension of linear half spaces in R2 (Heinz and Riggle 2011),
relevant for VC dim of harmonic grammar (Pater 2008, Potts et al. 2010)

The hypothesis space of any linear learning
algorithm is feasibly learnable
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Conclusions

Some points:

I There is structure in the potentially high-dimensional definition
of phonological maps

I To study phonological category learning, we need to understand
how the hypothesis space is structured

I To characterize structure in the hypothesis space, we need to
understand what phonetic parameters are involved
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Conclusions

Is the class of tonal maps in natural language feasibly
learnable?

I Sufficiency of coarse temporal resolution consistent with
structure in tonal maps

I Studied tonal maps appear to have nearly linearly separable
concepts in small parameter spaces

I Hypothesis spaces with finite VC dimension are feasibly
learnable

I We can study the learnability of classes of grammars and
phonological maps in a unified way
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