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1 Introduction 

Phonological processes in a language have the potential to interact with one another in numerous ways 

(Kiparsky 1968, 1971). Two relatively common interaction types are bleeding and feeding interactions, with 

(1) showing hypothetical examples of both (for a similar hypothetical example, see Baković 2011). 

 

(1) Example of Bleeding and Feeding Interactions 

        Bleeding Feeding  

Underlying Representation (UR)    /esi/  /ise/ 

[-Low] → [αHigh] / [αHigh]C_ (Vowel Harmony)  ese  isi 

[s] → [ʃ] / _[+High] (Palatalization)    -  iʃi 

Surface Representation (SR)    [ese]  [iʃi] 

 

In the bleeding interaction above, the underlying form /esi/ undergoes harmony, since the /e/ and /i/ have 

different values for the feature [High]. Since the harmony is progressive, the /i/ assimilates to the /e/ and can 

no longer trigger the palatalization process (which occurs after harmony), resulting in a surface form of [ese]. 

The feeding interaction has the opposite effect, with an underlying /e/ becoming a high vowel due to harmony 

and then triggering the palatalization process to create the SR [iʃi]. The crucial difference between the two 

interaction types in this example is whether the UR undergoes lowering or raising due to the harmony process.  

 Two other interactions can be produced using these same URs by applying the two rules in the opposite 

order. These are called Counterbleeding and Counterfeeding interactions and are shown in (2).  

 

(2) Example of Counterbleeding and Counterfeeding Interactions 

    Counterbleeding  Counterfeeding  

UR   /esi/   /ise/   

Palatalization  eʃi   - 

Vowel Harmony  eʃe   isi 

SR   [eʃe]   [isi] 

 

In the counterbleeding interaction, both palatalization and harmony are able to change the underlying 

representation, but the motivation for palatalizing (i.e. a high vowel after an /s/) is erased by the harmony 

rule. In the counterfeeding interaction, the palatalization rule occurs too early to make any changes to the 

form, despite vowel harmony creating a potential palatalizing context later on in the derivation. 

Counterbleeding and counterfeeding interactions are typically called opaque, because in the surface forms of 

the language, certain processes (in this case, palatalization) seem to either over- or under-apply in places 

where they shouldn’t (Kiparsky 1971, McCarthy 1999, Baković 2011). 

 Questions about the formal representation and acquisition of opaque interactions have figured 

prominently in the phonological literature for decades. Following the introduction of OT, the debate 

emphasized the representational choices offered by parallel vs. serial architectures, but there is also a 

substantial literature debating the productivity (grammatical vs. exceptional status) of opaque interactions. 

In this paper we select four theoretical frameworks that exemplify this range of positions to examine the 
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predictions these representational options make for learning and generalization. We examine two serial 

theories that, like the rule-based sketch above, treat all process interactions as grammatical: Stratal OT 

(Kiparsky 2000) and Harmonic Serialism (McCarthy 2000). We also examine two parallel theories that differ 

in their treatment of the processes as grammatical vs. exceptional. Two-level constraints (McCarthy 1996) 

ban certain input-output mappings and provide a way to represent all four process interactions as grammatical 

in parallel OT. Finally, we also examine a parallel model with indexed constraints (Pater 2010) which treat 

opacity as lexical exceptionality (Sanders 2003).  

Recent computational and experimental work has sought to better understand how interacting processes 

are acquired by both humans (Ettlinger 2008, Prickett 2019) and computational models of phonological 

learning (Jarosz 2016, Nazarov & Pater 2017, Prickett 2019). However, little work has directly compared the 

differences in predictions made by various theories of opacity regarding learning and generalization. This is 

the focus of the present paper. We present computational simulations demonstrating that four constraint-

based theories of opacity each make unique predictions about these phenomena. 

The paper proceeds as follows: §2 summarizes existing work on both human and machine learning of 

phonological interactions, §3 presents the analyses for opaque interactions that each of the theories of interest 

use, §4 describes the novel computational modeling experiments we ran, §5 presents the results of those 

simulations, and §6 interprets them and discusses their implications. 
 

2 Background 

2.1    Learning biases and phonological interactions    When first discussing the possible ways that 

phonological processes could interact, Kiparsky (1968, 1971) pointed out that speakers seemed to prefer 

certain kinds of interactions over others. The preferences Kiparsky observed were based on sound changes 

where rules were lost or re-ordered diachronically. Kiparsky first proposed a bias preferring interactions that 

maximally utilize all of the rules involved in a derivation, called Maximal Utilization Bias (henceforth 

MaxUtil). For example, in the feeding and counterbleeding examples above, both harmony and palatalization 

are applied to forms like /ise/ and /esi/, meaning that a MaxUtil bias would favor such languages. In bleeding 

and counterfeeding interactions, however, the same URs only undergo harmony – palatalization is bled or 

counterfed and ends up not applying. The MaxUtil bias disfavors these interactions that provide no evidence 

for palatalization. Kiparsky (1971) later proposed a bias affecting the acquisition of opaque interactions: a 

Transparency Bias. This bias favors bleeding and feeding over their opaque counterparts, counterbleeding 

and counterfeeding. The idea behind this bias is that process interactions should be easier to learn if the 

motivation for their application or nonapplication is visible on the surface. 

 Jarosz (2016) explored what kinds of learning biases would affect an HS model that was trained on 

interactions between a vowel-deletion process and a palatalization process. She equipped the model with 

serial markedness constraints (see §3 for more on these) and gave it three kinds of training data: words where 

only palatalization was applicable, words where only deletion was applicable, and words that demonstrated 

an interaction between the two processes (either bleeding, feeding, counterbleeding, or counterfeeding). 

When the model was trained on data that contained equal proportions of these three types of contexts, there 

was no strong bias for or against any of the four interaction types. However, when the interacting context 

was presented substantially more often in the training data compared to the contexts where only the individual 

processes of palatalization and harmony were applicable, a MaxUtil bias emerged (i.e. the model converged 

more quickly for the feeding and counterbleeding languages). This occurred because it took longer for the 

model to learn the palatalization process in this condition since most of the data did not support palatalization. 

On the other hand, when the interacting context was presented much less frequently, the model learned both 

individual processes quickly, but took a long time to learn the opaque interaction between them. In this 

condition, the bleeding and feeding interactions were learned more quickly, showing a Transparency Bias.  

 Nazarov and Pater (2017) also found transparency bias when training a stratal model on a pattern based 

on the raising and flapping interactions in Canadian English. When they trained the model on interactions 

between a vowel raising process and a consonant flapping process, it converged more reliably when the 

interaction was bleeding than when it was counterbleeding. However, they found that, as they increased the 

realism of the training data by introducing additional data providing evidence for which stratum each process 

applied in, the model’s transparency bias disappeared.  

 Artificial language learning has been used to investigate whether Kiparsky’s (1968, 1971) biases affect 
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human acquisition. Ettlinger (2008) found an apparent bias against maximally utilizing processes when he 

tested participants on counterbleeding and counterfeeding interactions. This was a between-subjects design 

with each participant learning patterns demonstrating only one of the two interactions. When tested on what 

they’d learned, participants that were assigned to his counterfeeding condition seemed to acquire their pattern 

better than those that were in his counterbleeding condition—the opposite of what a MaxUtil Bias would 

predict. However, he didn’t train use any transparent languages, so a transparency bias could not be explored.  

 Prickett (2019) used a similar, between-subjects design, except he tested all four of the main interaction 

types: bleeding, feeding, counterbleeding and counterfeeding. Following Jarosz’s (2016) simulations, the 

interactions were the result of a vowel deletion and palatalization process. When tested at the end of the 

experiment using a forced choice task, Prickett’s (2019) participants showed no language-wide effect of 

interaction type. However, when results were broken down by stimulus type, differences across languages 

became apparent. Participant performance on trials where only palatalization was conditioned (which 

involved a choice between palatalizing a form or mapping it faithfully) was affected by a MaxUtil Bias. That 

is, participants in the feeding and counterbleeding conditions had higher accuracy than those in the bleeding 

and counterfeeding conditions. Additionally, a Transparency Bias (i.e. higher accuracy on bleeding and 

feeding) emerged in participants’ performance when they were given words that demonstrated an interaction 

between the two rules (which involved a choice between a correct and incorrect ordering of the two 

processes). In computational simulations, Prickett (2019) found that both Jarosz’s (2016) HS model and a 

neural network captured the kind of biases he observed in humans.  

 

2.2    Generalizing to novel data when learning phonological interactions    Generalization to novel 

words has been an important method for investigating the kinds of representations that underlie phonological 

knowledge (e.g. Halle 1978). This has been extended to artificial language learning experiments, to further 

probe what kinds of representations and biases influence phonological acquisition in that context (e.g. Finley 

& Badecker 2009). The existing literature on phonological learning and generalization is extensive, but 

experimental work focusing on human learning and generalization of opaque and transparent interacting 

processes is quite limited. 

 Preceding the Prickett (2019) study described above, Kim (2012) and Brooks et al. (2013) both used 

artificial language learning experiments to test how participants would generalize from a language that had 

the potential for interaction. That is, participants saw evidence of two different phonological processes that 

could interact in the appropriate context but were never shown that context in the training phase of the 

experiment. Then, participants were asked to generalize to a novel interacting word to see whether they would 

do so in a transparent, opaque, or unexpected way. Kim’s (2012) results suggested that participants preferred 

to generalize in a way that created a counterfeeding interaction, although no inferential statistical tests were 

conducted on those results. Brooks et al. (2013) found that their participants preferred to not apply either 

process in interacting contexts, a phenomenon that is likely unattested in natural language. 

 

2.3    Computational phonology and theories’ predictions    One of the ways that computational 

phonology provides insight into the rest of the field is by showing what theories of phonological 

representation predict when paired with theories of phonological learning. For example, classic OT (Prince 

and Smolensky 1993) assumes that any possible ranking of constraints in a particular theory (i.e. that theory’s 

factorial typology) predicts a language that should be attested in the real world. However, Staubs (2014) and 

Stanton (2016) demonstrated that standard, constraint-based theories of stress and footing, when paired with 

computational modeling, predict systematic learning biases that disfavor languages in the factorial typologies 

which are un or under-attested (see also Hughto 2018).  

 While the simulations in this paper do not deal directly with typology, they use a similar approach to 

explore what theories of phonological representation and learning predict about human behavior in an 

artificial language learning context.  Similar work has been used to test theoretical proposals in the past, such 

as a bias for natural phonological patterns (Wilson 2006) or surface identity constraints (Gallagher 2013). 

The simulations described in §4 look at two different predictions made by the theories of interest described 

in §1: (1) whether each theory has the kind of learning biases that Prickett (2019) observed in his experiment 

and (2) how each theory generalizes to novel kinds of interactions. While no experimental data yet exists for 

the latter, we show that each theory makes unique predictions that can be tested in future experiments.
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3 Representing phonological interactions 

 Most constraint-based theories, including those examined in this paper, can capture bleeding and feeding 

interactions straightforwardly with standard markedness and faithfulness constraints. An example of this 

using classic OT (Prince & Smolensky 1993) is shown in (3) and (4) for the bleeding and feeding interactions 

from §1. The constraint definitions we use are:  *[si] assigns one violation for every [s][+High] sequence in 

the output, Agree assigns one violation for every pair of non-low vowels in the output that do not agree in 

their height, and Ident(F) assigns one violation for every segment with a different value for feature F in the 

output and input. 

 

(3) Constraint-based representation of a bleeding interaction 
 

/esi/ Agree *[si] Ident(Anterior) Ident(High) 

[esi] W* W*  L 

☞ [ese]    * 

[eʃi] W*  W* L 

[eʃe]   W* L 

 

(4) Constraint-based representation of a feeding interaction 
 

/ise/ Agree *[si] Ident(Anterior) Ident(High) 

[ise] W*  L L 

[isi]  W* L * 

[iʃe]  W*  * L 

☞ [iʃi]   * * 

  

In the tableaux above, the same constraint ranking produces both bleeding and feeding interactions, 

depending on what UR the grammar is given as input. Achieving this requires the markedness constraints 

motivating vowel harmony and palatalization to be ranked above the faithfulness constraints penalizing the 

two processes. Some differences across the four theories exist for how these transparent languages can be 

represented. For example, in HS, multiple steps are required to make both of the changes in the feeding 

derivation and when using indexed constraints, the bleeding interaction can be represented as an exception 

to a more general palatalization process (e.g. one that palatalizes [s]’s before any front vowels). However, 

for the sake of space, the rest of this section will focus on how the theories represent opaque interactions, 

which is where the main differences between them arise. 

 Stratal OT (Kiparsky 2000) represents phonological derivations as a series of multiple, independently 

ranked, OT-style grammars (called strata) that a form passes through in a particular order. To capture an 

opaque mapping, whatever process counterbleeds/counterfeeds the other must occur in an earlier stratum. 

This is exemplified in the tableaux in (5) and (6), where Stratum 1 takes the UR of a form as input and passes 

an intermediate form to Stratum 2. Then, Stratum 2 takes that intermediate form as input and outputs an SR.  

  

(5)  Stratal OT representation of a counterbleeding interaction 

 Stratum 1: Palatalization 

/esi/ Ident(High) Agree *[si] Ident(Anterior) 

esi  * W* L 

ese W* L  L 

☞ eʃi   *  * 

eʃe W* L  * 
 
 Stratum 2: Harmony 

eʃi Agree Ident(High) Ident(Anterior) *[si] 

[eʃi] W* L   

[ese]   * W*  

☞ [eʃe]  *   
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In these tableaux, the opaque mappings are achieved by limiting each of the two processes (i.e. 

palatalization and harmony) to one of the individual strata. Stratum 1 allows palatalization to occur by ranking 

*[si] over Ident(Anterior), but blocks harmony by ranking Ident(High) over Agree. The second stratum does 

the opposite, allowing harmony but no palatalization. This produces both counterbleeding and 

counterfeeding, depending on the UR. While counterfeeding can only be captured if each of the strata are 

limited to a single process, counterbleeding can also be achieved by a grammar with a Stratum 1 allowing 

only palatalization and a Stratum 2 allowing both processes. When a counterbleeding form is processed by 

the second stratum, palatalization would have already applied and applying it again would make no change. 

 

(6) Stratal OT representation of a counterfeeding interaction 

 Stratum 1: Palatalization (inapplicable) 

/ise/ Ident(High) Agree *[si] Ident(Anterior) 

☞ ise  *   

isi W* L W*  

iʃe   *  W* 

iʃi W* L  W* 

 Stratum 2: Harmony 

ise Agree Ident(High) Ident(Anterior) *[si] 

 [ise] W* L  L 

☞ [isi]  *  * 

[iʃe]  W* L W* L 

[iʃi]  * W* L 

 

 The next theory we consider is HS (McCarthy 2000) with Serial Markedness Reduction (Jarosz 2014). 

HS forces phonological mappings to occur serially, with each form passing through the same grammar over 

multiple steps, with at most one change occurring to the form during each of those steps, until it eventually 

maps faithfully onto itself. Crucially, the HS grammar presented here makes use of serial markedness (SM) 

constraints (Jarosz 2014), which create a limited kind of memory across separate passes through the 

grammar, allowing it to represent opaque mappings (cf. the “candidate chains” in McCarthy 2007).  Each 

candidate encodes which markedness constraints it has satisfied  and in what order (shown in angle brackets), 

while the SM constraints specify which markedness constraints should be satisfied before others. The SM 

constraints’ take the form SM(m1, m2), where m1 and m2 are markedness constraints, and violations are 

assigned if m2 is satisfied before or simultaneously with m1. This is demonstrated in (7) and (8) for the opaque 

interactions. “BOTH” in angle brackets indicates both markedness constraints in the tableau are satisfied in 

the same step, which incurs a violation for any SM constraint that specifies an order for those two constraints. 

 

(7) HS+SM representation of a counterbleeding interaction 

 Step 1: Palatalization (bleeding candidate blocked by SM constraint) 

/esi/ SM(*[si], Agree) Agree Ident(High) *[si] Ident(Anterior) 

[esi]  *  W* L 

ese <BOTH> W* L W*  L 

☞ eʃi <*[si]>  *   * 

 

 Step 2: Harmony 

eʃi <*[si]> SM(*[si], Agree) Agree Ident(High) *[si] Ident(Anterior) 

[eʃi] <*[si]>  W* L   

☞ eʃe <*[si], Agree>   *   

esi <*[si]>  W* L W* W* 

 

In counterbleeding, a high-ranked SM constraint rules out the candidate that harmonizes on the first step, 

since harmonizing satisfies both constraints simultaneously. This blocks the bleeding mapping, causing just 

palatalization to occur in the first step, then harmony in the second, followed by convergence (not shown). 
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(8) HS+SM representation of a counterfeeding interaction 

     Step 1: Harmony 

/ise/ SM(*[si], Agree) Agree Ident(High) *[si] Ident(Anterior) 

[ise]  W* L L  

☞ isi <Agree>   * *  

iʃe   W* L L W* 

 

     Step 2: Convergence (palatalization blocked by SM constraint) 

isi <Agree> SM(*[si], Agree) Agree Ident(High) *[si] Ident(Anterior) 

☞ [isi] <Agree>    *  

iʃi <Agree, *[si]> W*   L W* 

 

 Counterfeeding can be represented using the same ranking,1 since the constraint SM(*[si], Agree) blocks 

palatalization from occuring after harmony in the second step. Thus, in this theory, opaque interactions are 

captured via high ranking of SM constraints, which require that markedness constraints be satisfied serially 

in a specified order.  

 Unlike Stratal OT and HS, the next theory, two-level constraints (McCarthy 1996), represents all 

interactions in a parallel, one-step mapping. Instead of representing opacity using ordered steps, two-level 

constraints capture the phenomenon by assigning violations to forms with banned sequences, similar to 

standard markedness constraints. However, like faithfulness constraints, two-level constraints can reference 

both the UR and the SR of a form. Here, this will be shown using constraint names like *[A]/B/, which 

assigns a violation to any form with a sequence of segments on the surface in which the first segment is an 

[A] and the second segment corresponds underlyingly to a /B/. The tableaux in (9) and (10) demonstrate how 

this analysis works for the opaque interactions. 

 

(9) Two-level constraint representation of a counterbleeding interaction 
 

/esi/ *[s]/i/ Agree *[si] Ident(Anterior) Ident(High) 

[esi] W* W* * L L 

[ese] W*   L * 

[eʃi]   W*  * L 

☞ [eʃe]    * * 
 

(10) Two-level constraint representation of a counterfeeding interaction 
 

/ise/ *[ʃ]/e/ Agree *[si] Ident(Anterior) Ident(High) 

[ise]  W*   L 

☞ [isi]   *  * 

[iʃe]  W* W*  W* L 

[iʃi] W*  L W* * 

 

In (9), counterbleeding is captured by ranking the two-level constraint *[s]/i/ higher than Ident(Anterior), 

which requires palatalization of any surface [s] followed by /i/ underlyingly, regardless of the surface height 

of the vowel. Similarly, in (10), ranking the two-level constraint *[ʃ]/e/ above *[si] prevents palatalization 

for segments that were not followed by /i/ underlyingly. Essentially, two-level constraints allow the grammar 

to condition palatalization on the underlying – rather than surface – height of the vowel.  

The final theory treats opaque mappings as exceptional (see, e.g. Sanders 2003), using indexed constraints 

(Pater 2010) paired with classic OT (Prince & Smolensky 1993). Tableaux demonstrating how such an 

approach can capture the same counterbleeding and counterfeeding mappings discussed above are shown in 

(11) and (12), with subscripts designating which constraints are indexed to which morphemes, and indexed 

 
1 However, note that counterbleeding is again more flexible than counterfeeding, since either of the serial markedness 

constraints can be ranked high to achieve the former, while a specific serial markedness constraint is required for the 

latter. 
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constraints only being violated by forms that include the morphemes they are indexed to. Note that an 

additional markedness constraint, *[s][-Back], is needed in this analysis to motivate the overapplication of 

palatalization seen in the counterbleeding case. 

 

(11) Indexed constraint representation of a counterbleeding interaction 
 

/es0+i1/ *[s][-Back]1 Agree *[si] Ident(Anterior) Ident(High) 

[esi] W* W* * L L 

[ese] W*   L * 

[eʃi]   W*  * L 

☞ [eʃe]    * * 

 

(12)  Indexed constraint representation of a counterfeeding interaction 
 

/is2+e3/ *Ident(Anterior)3 Agree *[si] Ident(Anterior) Ident(High) 

[ise]  W*   L 

☞ [isi]   *  * 

[iʃe]  W* W*  W* L 

[iʃi] W*  L W* * 

 

 The indexed constraints act exactly like the two-level constraints by favoring the forms that result in 

opaque mappings over the forms that result in transparent ones. However, the crucial difference between 

these analyses is that the indexed constraints are conditioned on morpheme identity, rather than any 

underlying phonological features. This means that in the indexed constraints analysis, opaque mappings are 

not productive and would not generalize to novel morphemes (although, see Nazarov 2019 for a way of 

making indexation more productive). 

 As demonstrated throughout this section, each of these four theories can successfully represent opaque 

and transparent phonological interactions. This means that they all have the expressive power to capture the 

four interactions of interest, and all interactions should in principle be learnable in each framework. However, 

since each makes different assumptions about how the interactions are represented, each presents different 

learning challenges and potentially makes distinct predictions about what is hard to learn and what should 

occur in novel words and contexts. The next sections present the modeling work that explores these questions. 
 

4 Simulations 

To explore the predictions for each of the theories outlined in §3, we implemented each one as a 

probabilistic pairwise ranking grammar (Jarosz 2015) and modeled learning using Expectation Driven 

Learning (EDL; Jarosz 2015).2 3Probabilistic pairwise ranking is a way of representing probabilistic 

constraint-based grammars and can be applied to each of the four frameworks of interest. Likewise, EDL is 

applicable to all of these frameworks. EDL is straightforwardly extendable to any generative framework with 

probabilistic parameters (for an application of this learning model in the Principles and Parameters 

framework, see Nazarov & Jarosz 2017). It was first extended to serial HS by Jarosz (2016), and for the 

current project, we extended it to a two-level Stratal OT framework. Applying EDL to a new framework 

simply requires implementing a production module (ie GEN and EVAL) for that framework – EDL learning 

updates treat the production module as a black box and work exactly the same way across frameworks. While 

other implementations and learning algorithms have been used in the past for some of the theories of interest 

(e.g. Staubs & Pater 2016, Nazarov & Pater 2017), we used EDL here since it was consistently able to learn 

all of the phonological interactions in all of the theories, making it possible to systematically analyze 

differences in learning rates and generalization to novel forms over the course of learning. All learning 

models make assumptions about how learning works, but it is important to note that EDL does not in any 

way ‘build-in’ the MaxUtil or Transparency biases. The biases that arise during the course of learning are 

 
3

2 To download the software used for our simulations, visit https://github.com/gajajarosz/hidden-structure and 

https://github.com/blprickett/StratalOT_EDL. 
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consequences of general learning principles and the representations available to the learner, which vary 

depending on theoretical framework. 

4.1    Training    For all of the simulatons presented in this paper, we ran the models with a learning rate of 

.05 for 100 passes through the full set of training data. EDL can be run either in batch or online mode, and 

for these simulations we always used online. For all simulations, initial grammars were completely unbiased, 

with all constraints tied. Since there is some noisiness in the learning process, we ran each language-theory 

combination ten times to ensure any observed biases are robust. 

 The data given to the models used the interactions involving vowel harmony and palatalization presented 

in §1 and §3. Each language included four kinds of words: those that were faithful to their underlying 

representation, those that only harmonized, those that only palalatalized, and those that demonstrated one of 

the four relevant interactions. In (13), examples of each word type are shown. 

 

(13) Training data examples (grey cells withheld from training) 

 

 

 

 

 

As demonstrated by the table above, all four languages have equivalent training data for the faithful, 

harmonizing, and palatalizing words (i.e. the white cells in the table). However, the interacting words differ 

depending on the kind of interacting UR that is presented and whether the language is opaque or transparent. 

Only one interacting UR and SR pair type was provided in each language condition – the cells for the pairs 

not presented in a given condition are indicated in grey with an X. For example, a model acquiring the 

bleeding language would be trained on interacting forms like /esi/→[ese] that apply the two processes in a 

transparent ordering to the UR /esi/. This model would never be exposed to the feeding/counterfeeding UR 

/ise/ or the opaque ordering of processes (palatalization, then harmony), shown in the table using white cells. 

Conversely, a model trained on counterfeeding would see interacting forms like /ise/→[isi], with the 

processes applying in an opaque ordering to the UR /ise/. The training data for each language included these 

four types of URs, with variation in the tenseness of vowels, yielding a total of 20 items in each language.34 

 In addition to the training data, the model was given a constraint set at the start of learning that included 

every constraint that was relevant to the theory being tested. While all theories made use of the four standard 

constraints—Agree, *[si], Ident(Anterior), and Ident(High)—the rest of their constraint sets differed. When 

using a stratal analysis, the model was given the four standard constraints, with copies of each appearing in 

both strata. When testing HS with serial markedness reduction, the four main constraints were joined by the 

serial markedness constraints SM(Agree, *[si]) and SM(*[si], Agree). The two-level constraints worked 

similarly, but with *[s]/i/ and *[ʃ]/e/ being used instead. Finally, for the indexed analysis, the model was 

given the four standard constraints, the markedness constraint *s[-Back], and versions of all five constraints 

that were indexed to each of the suffix morphemes, for a total of 5 general constraints and 20 indexed ones.45   

4.2    Testing    As discussed in §2.1, Prickett (2019) observed both a MaxUtil Bias and a Transparency Bias 

affecting participants’ performance on the same forms across language conditions. A MaxUtil Bias was 

observed in the acquisition of the palatalization process, since participants’ accuracy on forms that only 

palatalized was higher in the feeding and counterbleeding languages. This is exactly where you might expect 

to see such a bias, since palatalization is the process that applies at different rates across the various languages. 

In feeding and counterbleeding languages, palatalization applies in the interacting context as well as in the 

 
4

3 The full set of training data can be downloaded at https://github.com/blprickett/StratalOT_EDL. 

5

4 While the models were mostly blind to morphological information, for the sake of indexing, some morphology had to 

be included. For these simulations, each form was broken up into a stem and a suffix, with the latter always being the 

final segment in the word. For example, the UR /esi/ would be broken up into /es+i/. 

 Faithful Harmonizing Palatalizing Interacting 

URs /aki/ /ase/ /eki/ /asi/ /esi/ /ise/ 

SRs: Feeding Condition [aki] [ase] [eke] [aʃi] X [iʃi] 

SRs: Bleeding  Condition [aki] [ase] [eke] [aʃi] [ese] X 

SRs: C.F.  Condition [aki] [ase] [eke] [aʃi] X [isi] 

SRs: C.B.  Condition [aki] [ase] [eke] [aʃi] [eʃe] X 
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palatalizing context, whereas in bleeding and counterfeeding languages, palatalization is only observed in 

the palatalizing context. Prickett observed the Transparency Bias when comparing accuracy on the interacting 

forms across language conditions: participants were more accurate in the feeding and bleeding conditions 

than in the counterfeeding and counterbleeding conditions. The interacting context is where the Transparency 

Bias arises since that is the context that differs between transparent and opaque language conditions. 

 To see whether each of the four theories predicts the kind of biases that Prickett (2019) observed in 

human learning, the models were tested in the same way as his participants. This involved forced choices 

between either palatalizing or mapping faithfully (in the case of palatalizing forms) and between either a 

correct or incorrect ordering of the processes (in the case of interacting forms). The forced choice task was 

simulated by giving the model the appropriate UR (e.g. /asi/) and using the current grammar to estimate the 

probabilities over all possible output SRs (e.g. [asi], [aʃi], [ase], etc.). Then, the probabilities of the two 

relevant choices (e.g. [asi] and [aʃi]) were normalized and the normalized probability of the correct SR was 

treated as the model’s accuracy for that choice. This is illustrated in (14). To examine the predictions over 

the course of learning for each framework, the model’s accuracy on each forced choice was calculated after 

each pass through the training data. 

 

(14) Illustration of forced-choice task that was given to the model 

 

 

 

 

 To explore the predictions that each theory makes about generalization to novel words, the model was 

also given a novel UR task. The data for this task consisted of whatever interacting forms the model wasn’t 

trained on, given the language it was learning. These novel UR forms are those marked with X in (13), above. 

For example, when acquiring the bleeding language, the model saw interacting mappings like /esi/→[ese] in 

its training data. For the novel UR task, it would then be asked to generalize from an interacting UR like /ise/. 

The model’s current grammar was used to estimate the probabilities for each possible SR (as described above 

for the bias test, but without any normalization) and the SR with the most probability was considered the 

model’s predicted output. As above, the predictions for the generalization task were calculated after each 

pass through the training data to determine what the model’s output was for the majority of acquisition. 

5 Results 

 The results for both the bias test and the novel UR test are described in this section. We considered a 

bias to be present in any model for which the accuracy across language conditions for the relevant word types 

exhibited the relative preferences observed in Prickett’s study (2019). That is, for MaxUtil Bias, models 

trained on feeding and counterbleeding had to have higher accuracy on palatalizing items than those trained 

on bleeding and counterfeeding. Likewise, for Transparency Bias, models trained on bleeding and feeding 

had to have higher accuracy on interacting items than those trained on the opaque languages. If these relative 

preferences occurred at any point in learning, the model was considered to have that bias. The results of this 

analysis are shown in (15).  

 

(15) Bias Test Results  

           Stratal OT  HS+SM    Two-level Indexed 

      MaxUtil, Transp.  MaxUtil, Transp.  MaxUtil  MaxUtil 
 

All models were affected by a MaxUtil Bias when performing the forced choice task for palatalizing forms. 

However, only the serial models (Stratal OT and HS) displayed a Transparency Bias. This means that only 

the serial theories predict a bias like the one Prickett (2019) observed in his experiment. 

 The results for the novel UR task were also analyzed and each model’s results for a given language were 
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categorized as one of three possible outcomes. The first possibility was that the model predicted a transparent 

mapping, like /ise/→[iʃi] (i.e., feeding) or /esi/→[ese] (i.e., bleeding). Alternatively, models could predict 

opaque mappings, like /ise/→[isi] (i.e., counterfeeding) or /esi/→[eʃe] (i.e., counterbleeding). The final option 

that we observed in the model’s output was a faithful mapping, like /ise/→[ise], where no change was made 

to the novel UR at all. The type of mapping with the highest probability for the majority of the learning,56 

given each theory and language, is shown below in (16).  

 

(16) Generalization Test Results (underlined labels show which language the model was trained on) 

   Bleeding Feeding  C.B.  C.F. 

 Stratal OT  Transparent Transparent Transparent Opaque 

 HS+SM   Transparent  Transparent Faithful  Transparent 

 Two-Level Constraints Transparent Opaque  Transparent Opaque 

 Indexed Constraints Transparent Opaque  Opaque  Opaque 

 

 The results above demonstrate that each of the four theories makes unique predictions for the 

generalization task that we gave to our model. The Stratal model generalizes transparently when trained on 

bleeding, feeding, and counterbleeding, meaning that it applies feeding, bleeding, and feeding mappings to 

novel URs in those conditions, respectively. When trained on counterfeeding, the Stratal model generalizes 

opaquely, meaning that it applies a counterbleeding mapping to the novel UR in that condition. The HS model 

with serial markedness constraints predicts transparent mappings for novel URs when trained on every 

language but counterbleeding. For that language, it predicts a faithful mapping, meaning that it would map a 

novel UR like /ise/ to the SR [ise]. The learners using two-level constraints generalize to novel URs 

transparently when trained on bleeding or counterbleeding and opaquely when trained on feeding or 

counterfeeding. And finally, the indexed constraints model predicts opaque generalization (i.e., either 

counterfeeding or counterbleeding mappings) when trained on every language other than bleeding. When 

learning bleeding, indexed constraints generalize transparently, meaning that the model predicts a feeding 

mapping for that novel UR. 
 

6 Discussion 

 In this paper, we’ve found novel predictions from four phonological theories that can each represent 

opaque and transparent interactions. The first set of predictions we showed involved learning biases and 

demonstrated that all four theories captured the kind of MaxUtil Bias observed by Prickett (2019). This is 

likely because the maximally utilizing languages (feeding and counterbleeding) provide twice as much 

evidence for the palatalization process as their counterparts (bleeding and counterfeeding). For example, a 

model trained on feeding, regardless of which theory it’s implementing, will get evidence for ranking *[si] 

over Ident(Anterior) every time it sees either a palatalizing form (e.g., /asi/→[aʃi]) or an interacting form 

(e.g., /ise/→[iʃi]). However, models trained on a bleeding interaction won’t get any evidence for the ranking 

of *[si] and Ident(Anterior) from their interacting forms (e.g., /esi/→[ese]). 

 While both of the serial models (Stratal and HS) were affected by a transparency bias, neither of the 

parallel models were. This likely results from the differences in the evidence that each theory needs for a 

correct ranking of its grammar. Stratal OT and HS both require specific rankings to be learned for the opaque 

languages that the transparent languages can do without and the model only receives evidence for those 

rankings when it sees an interacting item in training. For example, to learn counterfeeding, the Stratal OT 

model must have a ranking in its first stratum that produces just palatalization and a ranking in its second 

stratum that produces just harmony. Faithful, only-harmonizing, and only-palatalizing items don’t give the 

model any evidence for this, since those processes can all be done in a single stratum’s ranking. Only the 

interacting items (e.g., /ise/→[isi]) show the model that such a specific representation of the pattern is 

necessary. Similarly, the only evidence for where to rank the serial markedness constraints in HS appears in 

interacting contexts, and only the opaque languages require a highly specific, high ranking of SM constraints. 

 The parallel models don’t have the same lack of evidence when learning the opaque languages. For 

example, when acquiring counterbleeding, a two-level constraint model must learn to give *[s]/i/ a high 

 
6

5 Note that these were also the results at the end of learning for each model. 
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ranking. Not only do the interacting forms like /esi/→[eʃe] provide evidence for this ranking, but palatalizing 

forms like /asi/→[aʃi] support it as well. This means that the model will have relatively high accuracy for 

interacting items throughout the learning process when it’s being trained on the counterbleeding language 

and explains why no transparency bias appears to affect that model’s acquisition. The indexed model works 

similarly, with the version of *[s][-Back] that’s indexed to the underlyingly high suffixes being ranked high 

due to evidence from both interacting and palatalizing forms. 

 For the generalization task, none of the theories’ predictions are a priori obvious. It is only via explicit 

computational implementation of these theoretical alternatives and analysis of the modeling results that these 

predictions can be elucidated. The learning pressures are different in each theory because the crucial rankings 

required to account for the learning data are different in each theory, and the available evidence for the crucial 

rankings differs across theories and language conditions. We don’t have room here to describe why all four 

theories make the predictions that they do for the novel UR task, but for the remainder of this section, as an 

example, we’ll walk through why the stratal model generalizes in the way that it does. When learning 

bleeding or feeding, the model could represent the full language in a single stratum’s rankings, as shown in 

0 and (4), since each stratum is essentially its own classic OT grammar. In reality, the model ends up learning 

these rankings in both of its strata, which maximizes its performance during training, since it gives the model 

two chances to correctly map each UR to the appropriate SR. When learning counterbleeding, the model 

needs to learn a ranking that will only palatalize in the first stratum, but the second stratum can either apply 

both changes (palatalization and harmony) or just harmony as shown in (5) and discussed in §3. In our 

simulations, we found that the model tended to find solutions that did the former, likely because this also 

maximized performance for palatalizing items in training (by giving the model two chances in the derivation 

to correctly map those forms). Finally, counterfeeding required the most specific ranking since it needs 

Stratum 1 to only palatalize and Stratum 2 to only harmonize, as demonstrated in (6) and explained in §3. 

The solution that the Stratal model arrives at, given each language, is summarized below in (17) by showing 

which processes apply in each stratum for each language’s grammar. 

 

(17) Summary of the solutions that the Stratal model arrives at, given training on each language 

  Bleeding Feeding  Counterbleeding Counterfeeding 

 Stratum 1 Pal. & Harm.  Pal. & Harm. Palatalize Palatalize 

 Stratum 2 Pal. & Harm.  Pal. & Harm. Pal. & Harm. Harmonize 

   
 Each of these solutions affected the model’s generalization in different ways (summarized in 18). Since 

feeding and bleeding led the model to essentially the same grammar, it generalized transparently when given 

novel URs in both of those cases. For example, when trained on mappings like /esi/→[ese] (i.e. the bleeding 

language), the model generalized to test URs like /ise/ by putting the most probability on surface forms like 

[iʃi] (i.e. the feeding candidate). When trained on counterbleeding, the model still generalized transparently 

to test data like /ise/. This is because the novel UR /ise/ first goes through Stratum 1, which only applies 

palatalization, and doesn’t undergo any changes, since /ise/ doesn’t have an /s/ before a high vowel. Then the 

intermediate form ise will pass through the next stratum which applies both processes, resulting in a feeding 

mapping (as shown in 4), and the SR [iʃi] (i.e., a transparent mapping). Counterfeeding, however, will 

generalize opaquely, since its test data (e.g., /esi/) will first palatalize (becoming, eʃi) and then harmonize 

(becoming, [eʃe], the counterbleeding candidate). 

 

(18) Stratal Model’s Generalization Summary (changed segments in bold, mapping types italicized) 

  Bleeding Feeding  Counterbleeding  Counterfeeding 

Test UR  /ise/  /esi/  /ise/   /esi/   

Stratum 1  iʃi  ese  -   eʃi  

Stratum 2  -  -  iʃi   eʃe 

Predicted SR  [iʃi] (Transp.) [ese] (Transp.) [iʃi] (Transp.)  [eʃe] (Opaque) 

 

Future work should explore what humans actually do in a generalization task like the one simulated here. 

Similar methodologies, in which crucial data is withheld for testing, have been used successfully in a number 

of past artificial language learning studies (Wilson 2006, Finley 2008, Gallagher 2013 inter alia) to determine 
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what kind of theories best predict phonological generalization in humans. Other avenues for future work 

could include testing different computational models on this task—Prickett (2019) showed that a neural 

network could capture MaxUtil and Transparency biases. It could be useful to see whether such a learner’s 

generalization resemble one of the models presented here or if it would also make a unique prediction for the 

task. Finally, phonological generalization is not a phenomenon that can only be observed in artificial language 

learning. Some of the most influential studies on generalization in linguistics have used natural language (e.g. 

Halle 1978) and the novel generalization task we propose here could be applied to speakers of a language 

with opaque phonology if the correct kinds of interacting forms were absent from that language’s lexicon.  

While all four of the theories discussed here can capture bleeding, feeding, counterbleeding, and 

counterfeeding interactions, we found that they all make unique predictions for the tasks we simulated. This 

work provides a first step toward teasing apart predictions of different theoretical assumptions for learning 

and generalization. If human behavior can be shown to resemble the predictions made by one of these 

theories, it could help solve a long-standing debate over which is the appropriate phonological analysis. 

Furthermore, this work helps demonstrate how implementing phonological theories computationally can help 

lead to novel predictions and find new ways to determine which theory most closely captures human 

phonological knowledge and learning. 
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