The man who tried to redeem the world with logic

pitts

Source: Nautilus

From Nautilus:

“Though they started at opposite ends of the socioeconomic spectrum, McCulloch and Pitts were destined to live, work, and die together. Along the way, they would create the first mechanistic theory of the mind, the first computational approach to neuroscience, the logical design of modern computers, and the pillars of artificial intelligence. But this is more than a story about a fruitful research collaboration. It is also about the bonds of friendship, the fragility of the mind, and the limits of logic’s ability to redeem a messy and imperfect world.”

“The moment they spoke, they realized they shared a hero in common: Gottfried Leibniz. The 17th-century philosopher had attempted to create an alphabet of human thought, each letter of which represented a concept and could be combined and manipulated according to a set of logical rules to compute all knowledge—a vision that promised to transform the imperfect outside world into the rational sanctuary of a library.”

Kai von Fintel: Decoding the Meaning of Language

kai Kai von Fintel: “Linguistics is basically the science of language. You use a scientific approach, but you get to apply it to something central to humanity. We put these signals in the world and others can read our mind to some extent. I find that a baffling phenomenon — why not try to figure that out?” Full story by SHASS Communications.

“What makes linguistics, the science of language, so fascinating is that it exists at the intersection of science and the humanities. You use a scientific approach, and you get to apply it to something central to humanity.”

“We’re trying to find patterns in data, making hypotheses, throwing more data at it and seeing how it holds up,” he says. “We look at facts to distinguish what we can understand versus what we can’t.”

Festival delle Scienze 2015: The Unknown

festival delle scienze2015

“In order to make progress, one must leave the door to the unknown ajar – ajar only.”
“Per fare progressi, si deve tenere socchiusa la porta verso l’ignoto – socchiusa solamente.”
Richard Feynman

Co-directors Vittorio Bo & Jacopo Romoli: ” … this tenth edition of the Rome Science Festival aims to be a celebration of doubt, uncertainty and the unknown and the particular way to penetrate it known as the scientific method. The Festival programme is centred around questions involving physics, biology, psychology and linguistics: What is the relationship between uncertainty and indetermination? Between uncertainty and chance? What is hidden in black holes or in what we call dark matter or in the concept of infinity? How do we relate cognitively to uncertainty and the unknown and what language do we use to speak about them? How can we calculate uncertainty precisely? How do we use secrecy in politics?” The full program of the festival is here (Italian & English).

Going beyond Darwinian explanations

Jeremy England: “You start with a random clump of atoms, and if you shine light on it for long enough, it should not be so surprising that you get a plant.”

Ard Louis: “If England’s approach stands up to more testing, it could further liberate biologists from seeking a Darwinian explanation for every adaptation and allow them to think more generally in terms of dissipation-driven organization. They might find, for example, that the reason that an organism shows characteristic X rather than Y may not be because X is more fit than Y, but because physical constraints make it easier for X to evolve than for Y to evolve.”

Source: Quanta Magazine, January 22, 2014.

But things out there need to act on the brain, no?

@utafrith

Uta Frith

Uta Frith: “What is the role of language? When we consider social interactions this almost always involves language. Is language actually the primary driver of our social interactions, or is it the other way round?”

Kristian Tylen: ” … My preference is to think that language both evolves from and is shaped by our interactions with the surrounding physical and social environment.  And so it is out there rather than inside us. This is demonstrated by the way that language structures are motivated. Take the way we talk about pitch  In English and Danish: We talk about low and high pitch mapping onto low and high spatial notation. Other languages for instance use thick and thin or big and small. These relations all map onto universal experience. Low tones come from big creatures and high tones from small creatures. And it turns out that it is very difficult to learn the opposite relations.”

Uta Frith: “But things out there need to act on the brain, no?  I don’t disagree with you that the world outside the mind is a starting point, but the experience of the outside shaped the inside, over millenia.  As a consequence, I guess there are some pre-shaped circuits in the brain, which might become obsolete, if  the environment changed radically.  So this is why I would put the outside in second place, and the inside first.”

Source: Putting Language into the Social BrainSocial Minds: A Piece of the Frithmind.

Formulating science in terms of possible and impossible tasks

Marletto_0

Source: Edge

 

Edge conversation with Chiara Marletto

“When you think about physics, you usually describe things in terms of initial conditions and laws of motion; so what you say is, for example, where a comet goes given that it started in a certain place and time. In constructor theory, what you say is what transformations are possible, what are impossible, and why. The idea is that you can formulate the whole of fundamental physics this way; so, not only do you say where the comet goes, you say where it can go. This incorporates a lot more than what it is possible to incorporate now in fundamental physics.”

Where can the comet go, given what? What is the range of possibilities that we consider live options? We are not considering all LOGICAL possibilities! This is where work on natural language semantics becomes important: we rack our brains about how humans project possibilities from the facts they encounter and how language helps us keep track, categorize, and compare those possibilities. 

Connections: Modality for the 21st Century.

Fooling Deep Neural Networks

A video summary of the paper: Nguyen, Anh, Jason Yosinski, and Jeff Clune. “Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images.” arXiv preprint arXiv:1412.1897 (2014). The paper is available here.

From MIT Technology Review: “A technique called deep learning has enabled Google and other companies to make breakthroughs in getting computers to understand the content of photos. Now researchers at Cornell University and the University of Wyoming have shown how to make images that fool such software into seeing things that aren’t there. The researchers can create images that appear to a human as scrambled nonsense or simple geometric patterns, but are identified by the software as an everyday object such as a school bus. The trick images offer new insight into the differences between how real brains and the simple simulated neurons used in deep learning process images” (December 24, 2014).

Connections: Learning everything about anything. Also: Google researchers have developed software that can match complex images with simple sentences describing whole scenes, rather than just objects, e.g. “a group of young people playing a game of frisbee.”  

How does virtual reality affect the brain?

virtual-reality Nature Neuroscience, advance online publication: 24 November 2014.
UCLA Newsroom, 24 November 2014.

“Put rats in an IMAX-like surround virtual world limited to vision only, and the neurons in their hippocampi seem to fire completely randomly — and more than half of those neurons shut down — as if the neurons had no idea where the rat was, UCLA neurophysicists found in a recent experiment. Put another group of rats in a real room (with sounds and odors) designed to look like the virtual room, and they were just fine.” Kurzweil Accelerating Intelligence, November 25, 2014.

This raises many interesting questions: What happens when humans hear or read spatial descriptions or look at maps? Are their hippocampi building maps? Partial maps? No maps at all? How does this relate to the results reported in Benjamin Bergen’s book? How does the brain distinguish reality and fiction?

Radhika Nagpal: One of 10 people who mattered this year in science

Radhika-Nagpal

Source: Reflection Films

From Nature, volume 516, issue 7531, December 17 2014.
“When Radhika Nagpal was a high-school student in India, she hated biology: it was the subject that girls were supposed to study so that they could become doctors. Never being one to follow tradition, Nagpal was determined to become an engineer. Now she is — leading an engineering research team at Harvard University in Cambridge, Massachusetts. But she also has a new appreciation for the subject she once disliked. This year, her group garnered great acclaim for passing a milestone in biology-inspired robotics. Taking their cue from the way in which ants, bees and termites build complex nests and other structures with no central direction, Nagpal’s group devised a swarm of 1,024 very simple ‘Kilobots’. Each Kilobot was just a few centimetres wide and tall, moved by shuffling about on three spindly legs and communicated with its immediate neighbours using infrared light. But the team showed that when the Kilobots worked together, they could organize themselves into stars and other two-dimensional shapes.”
Earlier entry: Inferring simple rules from complex structures.