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A 2-layer symbolic network model based on the equilibrium equations of the Rescorla–Wagner model
(Danks, 2003) is proposed. The study first presents 2 experiments in Serbian, which reveal for sentential
reading the inflectional paradigmatic effects previously observed by Milin, Filipović Ður�ević, and
Moscoso del Prado Martı́n (2009) for unprimed lexical decision. The empirical results are successfully
modeled without having to assume separate representations for inflections or data structures such as
inflectional paradigms. In the next step, the same naive discriminative learning approach is pitted against
a wide range of effects documented in the morphological processing literature. Frequency effects for
complex words as well as for phrases (Arnon & Snider, 2010) emerge in the model without the presence
of whole-word or whole-phrase representations. Family size effects (Moscoso del Prado Martı́n, Bertram,
Häikiö, Schreuder, & Baayen, 2004; Schreuder & Baayen, 1997) emerge in the simulations across simple
words, derived words, and compounds, without derived words or compounds being represented as such.
It is shown that for pseudo-derived words no special morpho-orthographic segmentation mechanism, as
posited by Rastle, Davis, and New (2004), is required. The model also replicates the finding of Plag and
Baayen (2009) that, on average, words with more productive affixes elicit longer response latencies; at
the same time, it predicts that productive affixes afford faster response latencies for new words. English
phrasal paradigmatic effects modulating isolated word reading are reported and modeled, showing that
the paradigmatic effects characterizing Serbian case inflection have crosslinguistic scope.

Keywords: naive discriminative learning, morphological processing, compound cue theory, Rescorla–
Wagner equations, a-morphous morphology

In traditional views of morphology, just as simple words
consist of phonemes, complex words are composed of discrete
morphemes. In this view, morphemes are signs linking form to
meaning. A word such as goodness is analyzed as consisting of
two signs, the free morpheme good and the bound morpheme
-ness. When one reads goodness, the constituents good and
-ness are parsed out, and subsequently the meaning of the whole
word, “the quality of being good” (in any of the various senses

of good), is computed from the meanings of the constituent
morphemes.

The morphemic view has been very influential in psycholinguis-
tic studies of morphological processing. Many studies have ad-
dressed the question of whether the parsing of a complex word into
its constituents is an obligatory and automatic process (e.g., Rastle
et al., 2004; Taft, 2004; Taft & Forster, 1975) and have investi-
gated the consequences of such obligatory decomposition for
words that are not morphologically complex (e.g., corner vs.
walk-er, reindeer [not re-in-de-er] vs. re-in-state). Priming manip-
ulations have been used extensively to show that morphological
effects are stronger than would be expected from form or meaning
overlap alone (e.g., Feldman, 2000). Other studies (see, e.g., Lib-
ben, Gibson, Yoon, & Sandra, 2003; Marslen-Wilson, Tyler, Wak-
sler, & Older, 1994; Schreuder, Burani, & Baayen, 2003) have
addressed the consequences of the breakdown of compositionality,
both for derived words (business, “company” and not “the quality
of being busy”) and for compounds (hogwash, “nonsense”). Fur-
thermore, frequency effects have often been used as diagnostics for
the existence of representations, with whole-word frequency ef-
fects providing evidence for representations for complex words
and morphemic frequency effects pointing to morpheme-specific
representations (e.g., Baayen, Dijkstra, & Schreuder, 1997; Taft,
1979, 1994; Taft & Forster, 1976).
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In current theoretical morphology, however, the morpheme does
not play an important role. One reason is that, contrary to what one
would expect for a linguistic sign, bound morphemes often express
a range of very different meanings. In English, the formative -er is
used for deverbal nouns (walk-er) but also for comparatives
(greater). The suffix -s indicates plural on nouns (legs), singular
on verbs (walks), and the possessive (John’s legs). In highly
inflecting languages such as Serbian, the case ending -i indicates
dative or locative singular for regular feminine nouns (a class) but
nominative plural for masculine nouns.

A second reason is that formatives often pack together several
meanings, often only semisystematically. For instance, in Latin,
the formatives for the present passive contain an r as part of their
form, but this r can appear initially (-r, -ris, first and second person
singular) or finally (-tur, -mur, -ntur, third person singular, first
and third person plural). The exception is the formative for the
second person plural, which does not contain an r at all (-mini).
Thus, the presence of an r in a verb ending is a good, although not
perfect, indicator of passive meaning. To complicate matters even
further, the very same passive formatives are used on selected
verbs to express active instead of passive meaning, indicating that
the interpretation of these formatives is highly context dependent.
This is not what one would expect if these formatives were bona
fide linguistic signs.

A third reason is that some languages shamelessly reuse in-
flected forms as input for further case inflections, as exemplified
by Estonian nonnominative plural case endings attaching to the
partitive singular (Erelt, 2003). For instance, jalg (“foot,” nomi-
native) has as singular case endings forms such as jalga (partitive),
jala (genitive), and jalast (elative). The corresponding plural case
endings are jalad (nominative), jalgasid (partitive), jalgade (gen-
itive), and jalgadest (elative). Even though the form of the partitive
singular is present in the plural nonnominative case endings, it
does not make any semantic contribution to these plural forms (and
therefore is often analyzed as a stem allomorph).

A fourth reason is that form–meaning relationships can be
present without the need of morphemic decomposition. Phonaes-
themes, such as gl- in glow, glare, gloom, gleam, glimmer, and
glint, provide one example, and the initial wh of the question
words of English (who, why, which, whether, where,) provides
another (Bloomfield, 1933). Furthermore, blends (e.g., brunch,
from breakfast and lunch) share aspects of compositionality with-
out allowing a normal parse (see, e.g., Gries, 2004, 2006).

A fifth reason is that inflectional formatives often express sev-
eral grammatical meanings simultaneously. For instance, the in-
flectional exponent a for Serbian regular feminine nouns expresses
either nominative and singular or genitive and plural. Similarly,
normal signs such as tree may have various shades of meaning
(such as “any perennial woody plant of considerable size,” “a piece
of timber,” “a cross,” “gallows”), but these different shades of
meaning are usually not intended simultaneously in the way that
nominative and singular (or genitive and plural) are expressed
simultaneously by the a exponent.

A final reason is that in richly inflecting languages, the inter-
pretation of an inflectional formative depends on the inflectional
paradigm of the base word to which it attaches. For instance, the
above-mentioned Serbian case ending -a can denote not only
nominative singular or genitive plural for regular feminine nouns
but also genitive singular and plural for regular masculine nouns.

Moreover, for a subclass of masculine animate nouns, accusative
singular forms make use of the same exponent -a. The ambiguity
of this case ending is resolved, however, if one knows dative/
instrumental/locative plural endings for feminine and masculine
nouns (-ama vs. -ima, respectively). In other words, resolving the
ambiguity of a case ending depends not only on contextual infor-
mation in the preceding or following discourse (syntagmatic in-
formation) but also on knowledge of the other inflected forms in
which a word can appear (paradigmatic information).

Considerations such as these suggest that the metaphor of mor-
phology as a formal calculus with morphemes as basic symbols
and morphological rules defining well-formed strings as well as
providing a semantic interpretation, much as a pocket calculator
interprets 2�3 as 5, is inappropriate. Many studies of word for-
mation have concluded that more insightful analyses can be ob-
tained by taking the word as the basic unit of morphological
analysis (for details and more complex arguments against a beads-
on-a-string model of morphology, also known as “item-and-
arrangement morphology,” see, e.g., S. Anderson, 1992; Aronoff,
1994; Beard, 1995; Blevins, 2003, 2006; Booij, 2010; Hockett,
1987; Matthews, 1974).

The following quote from Hockett (1987, p. 84) is informative,
especially as in early work Hockett himself had helped develop an
item-and-arrangement model of morphology that he later regarded
as inadequate:

In 1953 Floyd Lounsbury tried to tell us what we were doing with our
clever morphophonemic techniques. We were providing alternations
by devising an “agglutinative analog” of the language and formulating
rules that would convert expressions in that analog into the shapes in
which they are actually uttered. Of course, even such an agglutinative
analog, with its accompanying conversion rules, could be interpreted
merely as a descriptive device. But it was not in general taken that
way; instead, it was taken as a direct reflection of reality. We seemed
to be convinced that, whatever might superficially appear to be the
case, every language is “really” agglutinative.

It is worth noting that in a regular agglutinating language, such as
Turkish, morphological formatives can be regarded as morphemes
contributing their own meanings in a compositional calculus.
However, understanding morphological processing across human
languages requires a general algorithmic theory that covers both
the many nonagglutinative systems and more agglutinative-like
systems.

If the trend in current linguistic morphology is moving in the
right direction, the questions of whether and how a complex word
is decomposed during reading into its constituent morphemes are
not the optimal questions to pursue. A first relevant question in
“a-morphous” approaches to morphological processing is how a
complex word activates the proper meanings, without necessary
assumption of intermediate representations supposedly negotiating
between the orthographic input and semantics. A second important
question concerns the role of paradigmatic relations during lexical
processing.

Of the many models proposed for morphological processing in
the psycholinguistic literature, a-morphous morphology and its
insights fit best with aspects of the triangle model of Harm and
Seidenberg (1999, 2004), Seidenberg and Gonnerman (2000), and
Plaut and Gonnerman (2000). This connectionist model maps
orthographic input units onto semantic units without intervening
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morphological units. The triangle model also incorporates phono-
logical knowledge, seeking to simulate reading aloud within one
unified system highly sensitive to the distributional properties of
the input, where other models posit two separate streams (orthog-
raphy to meaning and orthography to phonology; see, e.g.,
Borowsky et al., 2006; Coltheart, Rastle, Perry, Langdon, &
Ziegler, 2001).

In what follows, we propose a computational model, the “naive
discriminative reader,” which models morphological processing
with an architecture directly mapping form onto meaning without
using specific representations either for bound morphemes or for
complex words. The model follows the triangle model but differs
in various ways. First, it works with just two levels, orthography
and meaning. In this study, we do not address reading aloud but
focus instead on developing a model that properly predicts mor-
phological effects in comprehension. Second, there are no hidden
layers mediating the mapping of form onto meaning. Third, the
representations that we use for coding the orthographic input and
semantic output are symbolic rather than subsymbolic. Fourth, our
model makes use of a simple algorithm based on discriminative
learning to efficiently estimate the weights on the connections
from form to meaning, instead of backpropagation. The research
strategy we pursued in the present study was to formulate the
simplest probabilistic architecture that is sufficiently powerful to
predict the kind of morphological effects documented in the pro-
cessing literature.

Of special interest to our modeling effort are two general classes
of phenomena that suggest a form of “entanglement” of words
with morphologically related words during lexical processing.
Schreuder and Baayen (1997) documented for simple words that
the type count of morphologically related words codetermines
processing latencies in visual lexical decision. This “family size”
effect has been replicated for complex words and emerges also in
languages such as Hebrew and Finnish (Baayen, 2010; De Jong,
Schreuder, & Baayen, 2000; Moscoso del Prado Martı́n, Bertram,
Häikiö, Schreuder, & Baayen, 2004, Moscoso del Prado Martı́n et
al., 2005; Moscoso del Prado Martı́n, Kostić, & Baayen, 2004).
One interpretation of the family size effect, formulated within the
framework of the multiple readout model of Grainger and Jacobs
(1996), assumes that a word with a large family coactivates many
family members, thereby creating more lexical activity and hence
providing more evidence for a “yes” response in lexical decision.
Another explanation assumes that resonance within the network of
family members boosts the activation of the input word (De Jong,
Schreuder, & Baayen, 2003). In the present study, we pursue a
third explanation, following Moscoso del Prado Martı́n (2003,
Chapter 10), according to which family size effects can emerge
straightforwardly in networks mapping forms onto meanings.

The second class of phenomena of interest to us revolves around
the processing of inflected words that enter into extensive, highly
structured paradigmatic relations with other inflected words.
Milin, Filipović Ður�ević, and Moscoso del Prado Martı́n (2009)
showed, for Serbian nouns inflected for case and number, that
response latencies in the visual lexical decision task are codeter-
mined by the probabilities of a word’s other case endings and by
the probabilities of these case endings in that word’s inflectional
class. More precisely, the more a given word’s probability distri-
bution of case inflections differs from the corresponding distribu-

tion of that word’s inflectional class, the longer response latencies
are.

There are two main options for understanding these results.
Under one interpretation, case-inflected variants are stored in
memory, with computations over paradigmatically structured sets
of exemplars giving rise to the observed effects. This explanation
is extremely costly in the number of lexical representations that
must be assumed to be available in memory. We therefore pursue
a different explanation, one that is extremely parsimonious in the
number of representations required. In the present study, we show
that these paradigmatic effects can arise in a simple discriminative
network associating forms with meanings. It is crucial that the
network does not contain any representations for complex words.
Rather, the network embodies a fully compositional probabilistic
memory that activates meanings, given forms.

Although morphology and syntax have been strictly separated in
generative grammar (for an exception, see, e.g., Lieber, 1992), the
distinction between morphology and syntax is viewed as gradient
in approaches within the general framework of construction gram-
mar (Booij, 2005, 2009, 2010; Dabrowska, 2009; Goldberg, 2006).
In this framework, the grammar is an inventory of constructions
relating form to meaning. From a structural perspective, morpho-
logical constructions differ from phrasal or syntactic constructions
only in lesser internal complexity. From a processing perspective,
morphological constructions, being smaller, should be more likely
than syntactic constructions to leave traces in memory. However,
at the boundary, similar familiarity effects due to past experience
are predicted to arise for larger complex words and for smaller
word n-grams. Frequency effects have been established for (reg-
ular) morphologically complex words (see, e.g., Baayen et al.,
1997; Baayen, Wurm, & Aycock, 2007; Kuperman, Schreuder,
Bertram, & Baayen, 2009) and recently for short sequences of
words as well (Arnon & Snider, 2010; Bannard & Matthews, 2008;
Shaoul, Westbury, & Baayen, 2009; Tremblay & Baayen, 2010).

If phrasal frequency effects are of the same kind as frequency
effects for complex words, it becomes highly questionable that
frequency effects should be interpreted as reflecting whole-word
or whole-phrase representations, given the astronomical numbers
of words and phrases that would have to be stored in memory. In
the current study, we show that whole-word frequency effects as
well as phrasal frequency effects can arise in the context of
discriminative learning without the need to posit separate repre-
sentations for words or phrases. Finally, we also document, as well
as model, phrasal paradigmatic effects for English monomorphe-
mic words that parallel the paradigmatic effects for Serbian num-
ber and case inflection.

In what follows, we first introduce two experiments that provide
further evidence for inflectional paradigmatic effects for Serbian
nouns first reported by Milin, Filipović Ður�ević, and Moscoso
del Prado Martı́n (2009). These experiments shed further light on
whether these effects persist in sentential reading, whether they
survive the presence of a prime, and whether they are modulated
by sentential context. The remainder of the paper addresses the
computational modeling of lexical processing. After presenting the
naive discriminative reader model, we show that this model pro-
vides a close fit to the Serbian experimental data. We then proceed
with pitting the predictions of the naive discriminative reader
against the observed visual lexical decision latencies available in
the English Lexicon Project (Balota, Cortese, Sergent-Marshall,

440 BAAYEN ET AL.

Th
is

 d
oc

um
en

t i
s c

op
yr

ig
ht

ed
 b

y 
th

e 
A

m
er

ic
an

 P
sy

ch
ol

og
ic

al
 A

ss
oc

ia
tio

n 
or

 o
ne

 o
f i

ts
 a

lli
ed

 p
ub

lis
he

rs
.  

Th
is

 a
rti

cl
e 

is
 in

te
nd

ed
 so

le
ly

 fo
r t

he
 p

er
so

na
l u

se
 o

f t
he

 in
di

vi
du

al
 u

se
r a

nd
 is

 n
ot

 to
 b

e 
di

ss
em

in
at

ed
 b

ro
ad

ly
.



Spieler, & Yap, 2004). We discuss a range of data subsets for
English: simple words, inflected words, derived words, pseudo-
derived words, words with phonaesthemes, compounds, and fi-
nally phrasal effects on the reading of simple words. In the General
Discussion, we compare the present approach with other compu-
tational models, including a more detailed comparison with the
Bayesian reader of Norris (2006).

Experiment 1

Inflectional paradigms in English are extremely simple com-
pared to the paradigms for case inflection on nouns or the para-
digms for verbal inflections found in languages such as Finnish,
Italian, or Serbian. Whereas English nouns distinguish between
singular and plural forms, Serbian nouns are inflected for number
and for case, distinguishing between six cases: nominative, geni-
tive, dative, accusative, locative, and instrumental. In classical
Serbian, there is a seventh case, the vocative. This case is hardly
functional in modern Serbian (D. Kostić, 1965) and will therefore
not be considered in the present study. In addition, Serbian nouns
belong to one of three genders, masculine, feminine, and neuter,
and fall into four inflectional classes, each of which realizes
combinations of number and case in its own distinct way. As in
Latin, inflectional endings (exponents) can be ambiguous. For
instance, for regular feminine nouns, the nominative singular
and the genitive plural are identical, and the same holds for the
genitive singular and the nominative and accusative plural.
Further such examples can be found in the example paradigms
shown in Table 1.

Milin, Filipović Ður�ević, and Moscoso del Prado Martı́n
(2009) addressed the processing of Serbian case paradigms by
focusing on the unique forms of a noun while differentiating
between inflectional classes. For each inflectional class, Milin et
al. calculated the relative entropy (RE, below) of a noun on the
basis of the probabilities p (relative frequencies) of a word’s
unique inflected variants (stem � case endings) and the corre-
sponding probabilities q (relative frequencies) of the exponents in
the word’s inflectional class (see Table 2):

RE � �
i�1

6

pi log2� pi /qi�. (1)

The probability distributions of the exponents in an inflectional
class can be viewed as the prototypical distribution of case endings
for that class. The probability distribution of a given word’s
inflected variants can be viewed as the distribution of a specific
exemplar. The relative entropy quantifies how different the exem-
plar is from the prototype. When the two distributions are identi-
cal, the log in (1) evaluates to zero, and hence the relative entropy
is zero. Another way of looking at the relative entropy measure is
that it quantifies how many extra bits are required to code the
information carried by a given exemplar when the theoretical
distribution of its class is used instead of its own distribution.
Milin, Filipović Ður�ević, and Moscoso del Prado Martı́n (2009)
showed empirically that a greater relative entropy (i.e., a greater
distance from the prototype) goes hand in hand with longer visual
lexical decision latencies. We will return to a more detailed dis-
cussion of the interpretation of relative entropy as a measure of
lexical processing costs once our computational model has been
introduced.

Experiment 1 was designed to ascertain whether these paradig-
matic effects extend to sentential reading and are not artificially
induced by the task requirements of the visual lexical decision
paradigm. We therefore exchanged the visual lexical decision task
used by Milin, Filipović Ður�ević, and Moscoso del Prado Martı́n
(2009) for self-paced reading. As we were also interested in
ascertaining how a subliminal prime might modulate the effect of
relative entropy, we combined self-paced reading with a priming
manipulation.

The introduction of a priming manipulation raises the question
of how the prime might affect the processing consequences of
the divergence between the target’s inflectional paradigm and the
prototypical paradigm of the target’s inflectional class. With the
introduction of a prime, three inflectional probability distributions
are potentially involved instead of just two, and four plausible
relative entropy measures could be introduced: one for the prime
and the inflectional class and one for the target and the inflectional

Table 1
Examples of Inflectional Paradigms for Serbian Nouns: Žena (“Women,” Feminine) and Prozor (“Window,” Masculine)

Case Number

Feminine Masculine

Form Frequency Lemma Form Frequency Lemma

Nominative singular žena 576 žena prozor 91 prozor
Genitive singular žene 229 žena prozora 157 prozor
Dative singular ženi 55 žena prozoru 10 prozor
Accusative singular ženu 167 žena prozor 211 prozor
Instrumental singular ženom 39 žena prozorom 54 prozor
Locative singular ženi 16 žena prozoru 111 prozor
Nominative plural žene 415 žena prozori 81 prozor
Genitive plural žena 336 žena prozora 83 prozor
Dative plural ženama 33 žena prozorima 3 prozor
Accusative plural žene 136 žena prozore 211 prozor
Instrumental plural ženama 24 žena prozorima 33 prozor
Locative plural ženama 4 žena prozorima 48 prozor

Note. Frequencies taken from Kostić (1999).
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class. Furthermore, prime and target could mask the probability
distribution of the inflectional class and serve as each other’s
reference distribution.

Instead of developing a series of different relative entropy
measures, we adopted a measure from information theory that
allowed us to evaluate three probability distributions with a single
measure, a weighted relative entropy. The use of this weighted
entropy measure is grounded in two assumptions. First, the hy-
pothesis, carried over from previous work, was that it is the
divergence of the target’s probability distribution from that of the
target’s inflectional class that is at issue. Second, we assumed that
the presence of the prime affects the target’s probability estimates,
interfering with the target’s paradigmatic relation to its inflectional
class.

The weighted relative entropy measure that we have adopted is
the one developed in Belis and Guiasu (1968); Taneja (1989); and
Taneja, Pardo, Gil, and Gil (1990). The distorting effect of the
prime on the probabilities of the target’s inflectional variants is
captured through weights on these probabilities:

D�P��Q; W� � �
i

piwi

�i piwi

log2

pi

qi
. (2)

In (2), the index i ranges over inflectional variants. The pi denote
the probabilities of the target’s own inflected variants (probability
distribution P). The qi denote the corresponding probabilities of the
exponents of the target’s inflectional class (probability distribution
Q). The weights wi represent the odds ratio of the form frequency
of the target’s i-th inflectional variant and the form frequency of
the prime’s i-th inflectional variant:

wi �
f�targeti�

f� primei�
, (3)

with the condition that both frequencies are greater than zero. W
represents the vector of these weights. The denominator �ipiwi is
the expectation for the distribution pi modulated by weights wi

�E�P; W�].
Table 3 provides an example of how the weighted relative

entropy is calculated for the feminine target noun planina
(“mountain”) with the noun struja (“electric current”) as its
prime. The nouns belong to the same inflectional class. In the
second and fifth columns of Table 3 we find the form frequency
counts, f�ai� and f�bi�, for each inflected form of the target and
the prime, respectively. By dividing these frequencies by the
column totals, f�a� � 552 and f�b� � 162, we obtain
estimates of the probabilities of these forms in their paradigms.
These estimated probabilities (relative frequencies) are shown

in the third and sixth columns, p�ai� � f�ai�/f�a� and p(bi) �
f(bi)/f(b). The seventh column contains the vector of weights:
the odds ratio of the form frequency of the target and the form
frequency of the prime, wi � f�ai�/f�bi�. In the eighth column
we find the weighted probabilities (piwi) of the inflected vari-
ants of the target. The expectation E�P; W� is obtained by
summing the values in this eighth column, �p�ai�wi � 4.53.
The ninth column represents the frequencies of the inflectional
exponents in the target’s inflectional class, f�ei�. The f�ei� are
obtained by summation over the frequencies of all words in the
inflectional class with the i-th inflectional ending. Finally, the
tenth column lists the estimated probabilities of the exponents,
given their class, obtained by dividing each entry in the ninth
column by their total, f�e� � 72,182: q�ei� � f�ei�/f�e�.

In summary, the questions addressed by Experiment 1 are, first,
whether paradigmatic entropy effects are present in sentential
reading and, second, whether the effect of a prime on paradigmatic
processing, if present, is adequately captured using a weighted
relative entropy measure.

Method

Participants. A total of 171 undergraduate students of psy-
chology from the University of Novi Sad (150 women and 21 men)
participated in the experiment for partial course credit. All partic-
ipants were fluent speakers of Serbian, with normal or corrected-
to-normal vision.

Materials and predictors. We retrieved the full set of nouns
that appeared at least once in each combination of case and number
in the Frequency Dictionary of Contemporary Serbian Language
(D. Kostić, 1999). For each gender separately, nouns were ran-
domly divided into two groups: a group of target nouns (hence-
forth targets) and a group of prime nouns (henceforth primes).
Each noun from the list of targets was randomly assigned to a noun
from the corresponding list of primes (belonging to the same
gender). The final list consisted of 50 masculine, 54 feminine, and
16 neuter pairs of targets and primes. For each prime and target
word, we compiled information on word length (in letters), word
(surface) frequency, and stem (lemma) frequency.

We used a normalized Levenshtein distance (Jurafsky & Martin,
2000; Levenshtein, 1996) to assess the orthographic similarity of
prime and target. The Levenshtein or edit distance of two strings
is the number of deletions, additions, or substitutions required to
transform one string into the other. The normalized Levenshtein
distance is the Levenshtein distance rescaled to the interval �0, 1�.
This rescaling is obtained by dividing the Levenshtein distance by
the length of the longest string:

Table 2
The Two Probability Distributions Determining the Relative Entropy of Planina (“Mountain”)

Unique noun form Frequency Probability p Exponent Frequency Probability q

planin-a 169 .31 a 18,715 .26
planin-u 48 .09 u 9,918 .14
planin-e 191 .35 e 27,803 .39
planin-ı̀ 88 .16 ı̀ 7,072 .10
planin-om 30 .05 om 4,265 .06
planin-ama 26 .05 ama 4,409 .06
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Normalized Levenshtein distance �
Levenshtein distance

max�string length�
. (4)

Following Lund and Burgess (1996); Landauer and Dumais
(1997); McDonald and Ramscar (2001); and Filipović Ður�ević,
Ður�ević, and Kostić (2008), we used a cosine similarity measure
to represent the semantic proximity of the target and the prime in
the hyperspace of their realized textual contexts. This measure
reflects the angle between two contextual vectors in hyperdimen-
sional semantic space:

cos�v1, v2� �
v1v2

�v1��v2�
, (5)

where v1 represents the context vector of the first word and v2 the
context vector of the second word. A context vector vi is defined
by the co-occurrence frequencies of word i with a predefined set of
high-frequency context words. The more often two vectors occur
with the same context words, the smaller the angle between their
corresponding context vectors and the larger the similarity be-
tween the two words, with cos3 1.0. To calculate the cosine
similarity, we used the 1,000 most frequent words of the Serbian
language, as retrieved from the Frequency Dictionary of Contem-
porary Serbian Language (D. Kostić, 1999), as the context words
list. Co-occurrence of the prime and target with the context words
was represented by a 1,000-dimensional vector, which was built
using the electronic database of journal articles of Media Docu-
mentation Ebart (http://www.arhiv.rs), containing approximately
70 million words.

For each of the 120 target nouns, three grammatical Serbian
sentences were constructed such that each target noun appeared
exactly once in nominative singular, once in accusative singular,
and once in dative/locative singular. Sentences consisted of five
words. The position of the target word was counterbalanced: In
50% of the sentences it was the second word in the sentence and
in 50% of the sentences it was the third. In the full set of 360
sentences, each target therefore appeared three times, once in each
of three cases. Primes were not considered during the construction
of the sentences. The sentences contained various other nouns in
addition to the targets. These additional nouns appeared only once
across all experimental sentences, with six exceptions that ap-
peared twice. They did not belong to the previously selected set of
targets and primes.

Design and procedure. Our experimental design included
two fixed-effect factors. The first factor was target case with three
levels: nominative singular, accusative singular, and dative/
locative singular. The second factor was prime condition with five
levels: no prime (only hash marks presented), a different stem in a
different case, a different stem in the same case, the same stem in
a different case, and the same stem in the same case. Primes and
targets always belonged to the same inflectional class. The same
case and same stem condition implements the identity priming
condition. This experimental design with 3 � 5 levels is sum-
marized in Table 4.

A Latin-square design with 15 lists ensured that all target words
appeared in all of the selected cases and that each participant was
presented with all of the target words only once. Each list consisted
of eight sentences per each of the 15 experimental conditions
(three target cases by five priming conditions), totaling to 120T

ab
le

3
T

he
In

fl
ec

te
d

V
ar

ia
nt

s
of

th
e

F
em

in
in

e
N

ou
ns

Pl
an

in
a

(“
M

ou
nt

ai
n”

)
an

d
St

ru
ja

(“
E

le
ct

ri
c

C
ur

re
nt

”
)

N
ou

n
fo

rm

T
ar

ge
t

in
fl

ec
te

d
va

ri
an

t

N
ou

n
fo

rm

Pr
im

e
in

fl
ec

te
d

va
ri

an
t

W
ei

gh
t

C
la

ss
ex

po
ne

nt

Fr
eq

ue
nc

y
R

el
at

iv
e

fr
eq

ue
nc

y
Fr

eq
ue

nc
y

R
el

at
iv

e
fr

eq
ue

nc
y

Fr
eq

ue
nc

y
R

el
at

iv
e

fr
eq

ue
nc

y

f(
a i

)
p(

a i
)

�
f(

a i
)/

f(
a)

f(
b i

)
p(

b i
)

�
f(

b i
)/

f(
b)

w
i
�

f(
a i

)/
f(

b i
)

p i
w

i
f(

e i
)

q(
e i

)
�

f(
e i

)/
f(

e)

pl
an

in
-a

16
9

0.
31

st
ru

j-
a

40
0.

25
4.

23
1.

31
18

,7
15

0.
26

pl
an

in
-u

48
0.

09
st

ru
j-

u
23

0.
14

2.
09

0.
19

9,
91

8
0.

14
pl

an
in

-e
19

1
0.

35
st

ru
j-

e
65

0.
40

2.
94

1.
03

27
,8

03
0.

39
pl

an
in

-ı̀
88

0.
16

st
ru

j-
ı̀

8
0.

05
11

.0
1.

76
7,

07
2

0.
10

pl
an

in
-o

m
30

0.
05

st
ru

j-
om

9
0.

06
3.

33
0.

17
4,

26
5

0.
06

pl
an

in
-a

m
a

26
0.

05
st

ru
j-

am
a

17
0.

10
1.

53
0.

08
4,

40
9

0.
06

f(
a)

�
55

2
f(

b)
�

16
2

E
(p

;W
)

�
�

p(
a i)w

i
�

4
.5

3
f(

e)
�

72
,1

82

N
ot

e.
C

ol
um

ns
pr

es
en

t
fr

eq
ue

nc
ie

s
an

d
re

la
tiv

e
fr

eq
ue

nc
ie

s
of

th
e

re
sp

ec
tiv

e
in

fl
ec

tio
na

l
pa

ra
di

gm
s

an
d

th
e

in
fl

ec
tio

na
l

cl
as

s
to

w
hi

ch
th

ey
be

lo
ng

.

443LEXICAL PROCESSING WITH DISCRIMINATIVE LEARNING

Th
is

 d
oc

um
en

t i
s c

op
yr

ig
ht

ed
 b

y 
th

e 
A

m
er

ic
an

 P
sy

ch
ol

og
ic

al
 A

ss
oc

ia
tio

n 
or

 o
ne

 o
f i

ts
 a

lli
ed

 p
ub

lis
he

rs
.  

Th
is

 a
rti

cl
e 

is
 in

te
nd

ed
 so

le
ly

 fo
r t

he
 p

er
so

na
l u

se
 o

f t
he

 in
di

vi
du

al
 u

se
r a

nd
 is

 n
ot

 to
 b

e 
di

ss
em

in
at

ed
 b

ro
ad

ly
.



sentences. The presentation sequence was randomized within each
list and for each participant separately.

The presentation of nontarget words in each sentence was pre-
ceded by a 53.2-ms (exactly four ticks, 13.3 ms each, adjusted with
the monitor refresh rate) presentation of hash marks. The stimulus
preceding the target word was also presented for 53.2 ms. How-
ever, depending on the priming condition, the target word was
preceded by hash marks, its random noun pair in the same case, its
random noun pair in a different case, the same noun in a different
case, or the same noun in the same case (identity priming).

Participants were instructed to read the words silently in order to
understand the meaning of a sentence. The beginning of each
sentence was announced on the screen and was initiated by a
participant’s button press. Each word remained on the screen until
the participant’s response. The next word of the sentence was
shown on the screen immediately after this response (preceded by
hash marks or the word’s prime). We measured reading latencies
for the target words as the time elapsed from the onset of the target
word to the participant’s response.

The stationary-window variant of the self-paced sentence read-
ing task was used as a compromise between a task such as lexical
decision and natural sentence reading. On the one hand, priming is
much more engaged in lexical-decision experiments, in which
isolated words are presented on the center of the screen, preceded
(or sometimes succeeded) by the prime. On the other hand, the
moving-window paradigm is a more natural variant of the self-
paced sentence reading task, as it requires the eye to move through
the sentence. Nevertheless, the stationary-window paradigm has
been found to be a reasonable alternative (cf. Juola, Ward, &
McNamara, 1982, and Just, Carpenter, & Woolley, 1982, for their
discussion of gains and losses in reading when eye movements are
made unnecessary).

Fifteen percent of the sentences were followed by a yes/no
question querying for comprehension in order to prevent partici-
pants from pressing the button automatically and to make sure that
they read the sentences for meaning. Prior to the experiment,
participants were presented with 12 practice trials.

The experiment was carried out with SuperLab Pro 2.0 experi-
mental software (http://www.cedrus.com), running on a PC, with a
266-MHz Pentium II processor and a standard video card. The
monitor was set to a 75-Hz refresh rate and a resolution of
1,024–768 pixels. The stimuli were presented in light gray, 40-pt
Yu Helvetica capital letters, on a black background.

Results and Discussion

Five participants were excluded due to large numbers of erro-
neous answers to the questions (error rates exceeding 30%). Anal-
ysis of reaction times (RTs) revealed a small number of extreme
outliers (0.5% of the data) that were excluded from further anal-
ysis. Response latencies and word (surface) and stem frequencies
for targets and for primes were log-transformed to approximate
normality. In order to remove autocorrelational structure from the
residual errors (Baayen & Milin, 2010), we included two control
predictors, the trial number of an item (trial) in a participant’s
experimental list (rescaled to Z scores to bring its magnitude in line
with that of other predictors) and the response latency at the
preceding trial (previous RT). We used linear mixed-effect mod-
eling (Baayen, Davidson, & Bates, 2008; Bates, 2005) with par-
ticipant and word as crossed random-effect factors.

We probed for nonlinear effects of the covariates and for a
significant contribution of by-word or by-participant random
slopes, using treatment dummy coding for fixed-effect factors.
The latency at the previous target required by-participant ran-

Table 4
Characteristics of the Sentence Stimuli

Target case Prime condition

Example of sentence stimuli

Prime Target

Nominative hash marks #####
different stem, different case KULOM
different stem, same case NJEGOVA KULA PORODICA GA JE VOLELA.
same stem, different case PORODICOM
same stem, same case PORODICA

His family loved him.
Accusative hash marks #####

different stem, different case KULOM
different stem, same case OSRAMOTIO JE KULU PORODICU SVOJIM PONAŠANJEM.
same stem, different case PORODICOM
same stem, same case PORODICU

He embarrassed (his)
family with his
behavior.

Dative/locative hash marks #####
different stem, different case KULOM
different stem, same case U NJENOJ KULI PORODICI NEMA PLAVOOKIH.
same stem, different case PORODICOM
same stem, same case PORODICI

In her family, no one
is blue-eyed.

Note. The target is presented in bold, and primes are presented in small capitals.
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dom slopes. The order of a trial turned out to be characterized
by a significant nonlinearity and also required by-participant
weights for the linear slope. After removal of potentially influ-
ential outliers with absolute standardized residuals exceeding
2.5, we refitted the model. Results are summarized in Table 5
and presented in Figure 1.

The first two panels of Figure 1 present the effects of control
variables. The positive slope for the previous target latency as a
predictor of the current target’s reading latency is indicative of con-
sistency and/or inertia in the participants’ behavior across trials. The
slope for the target in the third position in the sentence was greater
than that for the slope of the target in the second position. The
somewhat richer preceding syntactic context for targets in the third
position may have afforded enhanced sentential integration, with a
spillover effect from the difficulty of integration at the previous trial.
The negatively decelerating effect of trial indicates that participants
gained experience with the task as they progressed through the ex-
periment. The positive slope for word length and the negative slope
for target lemma frequency are as expected.

As to the fixed-effect factor prime condition: The identity con-
dition (same stem, same suffix; SS) elicited the shortest latencies,
and the different stem, different suffix condition (DD) showed the
longest latencies. The different stem, same suffix (DS) and same
stem, different suffix (SD) conditions occupied intermediate posi-
tions. The condition in which only hash marks were shown elicited
longer latencies than the identity condition but shorter latencies
than the other three priming conditions.

The advantage of the identity condition is as expected, given
that the target word is available 53.2 ms prior to the point in time
at which it becomes (fully) available in the other prime conditions
and is never disrupted by a mask or mismatching information. The
fast average response to the no-prime condition (hash marks only)

compared to the DD, DS, and SD prime conditions is of special
interest, as it indicates that the conflicting information provided by
a different stem, a different suffix, or both disrupts processing
more than the presentation of linguistically neutral hash marks.

Turning to the effect of target case, we find that nouns with
nominative case elicited shorter latencies than did the other two
oblique cases (accusative and dative/locative), irrespective of gen-
der. This is in line with previous findings on Serbian (cf. A. Kostić
& Katz, 1987; Lukatela, Gligorijević, Kostić, & Turvey, 1980;
Lukatela et al., 1978). One possible interpretation is that it mirrors
the difference in number of syntactic functions and meanings of
Serbian noun cases, where nominative has only three functions/
meanings, as compared to a magnitude larger number for the other
(oblique) cases used in this study (for more about the role of
syntactic functions and meanings in Serbian, see A. Kostić,
Marković, & Baucal, 2003; also, syntactic functions and meanings
are further discussed in the framework of information theory by
Milin, Kuperman, Kostić, & Baayen, 2009).

In what follows, we excluded the no-priming condition from the
data set, as this makes it possible to include predictors bound to the
prime. Although target words occurred in three cases (nominative, or
accusative, or dative/locative), an initial survey of the data revealed
that the relevant contrast was between nominative and nonnominative
case. Hence, we used target case as a binary factor contrasting
whether nominative case is true or false. As the prime’s stem fre-
quency and the target’s word frequency were irrelevant as predictors,
in contrast to the prime’s word frequency and the target’s stem
frequency, only the latter two frequency measures are considered
further. Finally, as the two priming conditions in which exactly one
constituent differed between prime and target revealed very similar
mean latencies, we collapsed these two factor levels, resulting in a
new factor for prime condition with three levels: DD (different stem
and different inflection), DSSD (different stem and same inflection or
different inflection and same stem), and SS (identical stem and in-
flection).

The condition number � characterizing the collinearity of the
predictors was too high (35.6) for us to proceed straightforwardly
with the regression analysis. We reduced � to 21.7 as follows.
First, we regressed the cosine similarity measure on prime condi-
tion, weighted relative entropy, and Levenshtein distance. The
residuals of this model constituted our orthogonalized cosine mea-
sure. Second, we replaced prime frequency by the residuals of a
model regressing prime frequency on target frequency. Both or-
thogonalized measures were significantly and positively correlated
with the original measures (r � .66 and r � .94, respectively).

The same random slopes were required as in the preceding
analysis. After removal of outliers and refitting, the model sum-
marized in Table 6 was obtained. As can be seen in Figure 2, the
frequency of the prime had a facilitatory effect (mid upper panel)
that was smaller in magnitude than the effect of the lemma fre-
quency of the target (left upper panel). The normalized Leven-
shtein distance (orthogonalized with respect to the prime condi-
tion) failed to reach significance (right upper panel). The cosine
similarity measure revealed the expected facilitation (left lower
panel). The more similar the prime and the target were in terms of
their textual occurrences, the faster processing was completed.

Finally, the weighted relative entropy measure revealed the
predicted inhibitory main effect (not shown). The more atypical
the probability distribution of an exemplar’s case inflections com-

Table 5
Initial Modeling of Target Word Reading Latencies: Partial
Effects for Fixed-Effect Factors and Covariates

Variable Estimate Lower Upper p

Intercept 5.5081 5.4019 5.6096 .0001
Previous RT 0.1250 0.1086 0.1394 .0001
Target position (3rd) 	0.4261 	0.5592 	0.3538 .0001
Trial order (linear) 	0.1146 	0.1250 	0.1045 .0001
Trial order (quadratic) 0.0213 0.0179 0.0252 .0001
Word length 0.0109 0.0070 0.0145 .0001
Prime condition

DD 0.1301 0.1200 0.1406 .0001
DS 0.0782 0.0678 0.0881 .0001
SD 0.0660 0.0555 0.0758 .0001
SS 	0.0305 	0.0408 	0.0206 .0001

Target case (accusative) 0.0246 0.0150 0.0340 .0001
Target case (dative/locative) 0.0262 0.0141 0.0387 .0002
Target lemma frequency 	0.0119 	0.0177 	0.0058 .0001
Previous RT 
 Target

Position (3rd) 0.0703 0.0593 0.0912 .0001

Note. For prime condition, the reference level was no prime (hash marks).
For target case, the reference level was nominative. Lower, upper � 95%
highest posterior density credible intervals based on 10,000 samples from the
posterior distribution of the parameters; p � Markov chain Monte Carlo p
value; RT � reaction time; DD � different stem, different suffix; DS �
different stem, same suffix; SD � same stem, different suffix; SS � same
stem, same suffix.
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pared to the prototype (its inflectional class), the longer it takes to
read that exemplar. It is interesting that the effect of weighted
relative entropy was modulated by case and gender: Inhibition was
present only for words in the oblique cases, of neuter or feminine
gender. For masculine nouns and for nouns in nominative case, the
effect vanished (dashed lines in the mid and right lower panels).

The emergence of a significant effect of weighted relative
entropy in sentential reading shows that the effects of inflectional
paradigmatic structure are not restricted to isolated word reading
and indicates that paradigmatic entropy effects may have broader
ecological validity. Furthermore, for oblique cases, the effect of
the prime is properly captured by the weighted relative entropy
measure. The greater the frequency odds between the target’s
inflected variants and those of the prime, the greater the delay in
processing time.

Are the interactions of case and gender with weighted relative
entropy contingent on nouns being presented in sentential context?
To address this question, we carried out a second experiment, in
which the prime and target pairs of Experiment 1 were presented
in isolation, using lexical decision with masked priming.

Experiment 2

Method

Participants. A total of 142 undergraduate students of psy-
chology from the University of Novi Sad (125 women and 17 men)
participated in the experiment for partial course credit. None of
them had participated in Experiment 1.

Materials. We used the set of 50 masculine, 54 feminine, and
16 neuter pairs of target and prime nouns from Experiment 1.

Design and procedure. We implemented the same 15 
 15
Latin-square design as in Experiment 1. To each list we added
an equal number of matched Serbian pseudowords (with legal
Serbian ortho-phono tactics), with the same inflected endings.
In this way we obtained 15 experimental lists with 240 items
each. Participants were randomly assigned to one of these
experimental lists. Presentation sequence was randomized
within each list and for each participant. The experiment was
preceded by 10 practice trials.

Figure 1. Initial modeling of target word reading latencies: Partial effects for fixed-effect factors and
covariates. The reference level for prime condition was no prime (hash marks); the other factor levels are labeled
DD (different stem, different suffix), DS (different stem, same suffix), SD (same stem, different suffix), and SS
(same stem, same suffix). The reference level for target case was nominative. Lower, upper: 95% highest
posterior density intervals based on 10,000 samples from the posterior distribution of the parameters; P �
Markov chain Monte Carlo p value; RT � reaction time; nom � nominative; acc � accusative; dat � dative.
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The target stimuli (words or pseudowords) were presented for
1,500 ms, preceded by a 53.2-ms prime. In the no-prime condition,
the target was preceded by hash marks. In the other priming
conditions, the target word immediately followed the prime word.
We measured lexical decision latencies for the target words as the
time elapsed from the onset of the target word to the participant’s
response. An experimental session lasted approximately ten min-
utes. Stimuli were presented with SuperLab Pro 2.0, in Serbian
Latin letters (light gray capital 40-pt Yu Helvetica on a black
background).

Results and Discussion

Inspection of the data revealed 7.3% of word items that fre-
quently produced erroneous answers. Typically, less frequent
words, such as brid (“blade,” “edge”), srez (“district”), mena
(“phase”), and nota (“note”), in combination with less frequent
inflectional ending (like dative/locative) provoked error responses.
Such error-prone words were removed from the data set. We
log-transformed response latencies, word (surface) frequencies,
and stem frequencies, as in Experiment 1. We used the same
predictors as in Experiment 1, decorrelated and transformed in the
same way. Participant and item were included as random-effect
factors.

Table 7 and Figure 3 summarize the mixed-effects model fitted
to the lexical decision data. We tested for possible nonlinearities

and by-word or by-participant random slope effects in the model,
removed outliers, and refitted the model to the data. The control
predictors previous RT and trial were significant predictors with
inhibitory and facilitatory effects, respectively. Trial was the only
predictor for which by-participant random slopes (for the quadratic
term of trial only) were supported by a likelihood ratio test. Word
length was inhibitory, as expected. Response latencies were de-
layed by the presence of a prime, with the greatest disadvantage for
primes composed of a different stem and a different inflectional
ending, as expected.

Response latencies increased with weighted relative entropy.
Unlike in the sentence reading experiment, interactions with case
and gender received no statistical support whatsoever, and we
therefore removed them from the model specification. The nor-
malized Levenshtein distance reached full significance in Experi-
ment 2 as an inhibitory predictor. For the lexical decision latencies,
the target’s form frequency was a slightly better predictor than the
target’s lemma frequency. As in sentence reading, there was a
facilitatory effect of the frequency of the prime, and as before this
effect was reduced compared to the frequency effect of the target.
The (orthogonalized) cosine similarity measure was not signifi-
cant.

The presence or absence of sentential context explains some
important differences in the results of the lexical decision and
self-paced reading experiments, which both used priming. In the
primed lexical decision experiment, words appeared in isolation,
without any context that would otherwise allow the participant to
anticipate the upcoming word and its case. Without such contex-
tual support, the cognitive system apparently falls back on the
decontextualized probability of the word’s form, as indicated by
the significance of the target’s inflectional form (surface) fre-
quency outperforming its lemma frequency, and the full signifi-
cance of the Levenshtein measure of orthographic similarity. Fur-
thermore, the presence of a prime in the absence of sentential
context rendered the cosine similarity measure insignificant.

It is less clear why in sentential reading, but not in isolated word
reading, the effect of weighted relative entropy is restricted to
oblique case forms of nonmasculine gender. A processing advan-
tage for nominative forms is in line with the results reported by
Lukatela et al. (1978, 1980) and A. Kostić and Katz (1987). As
argued above when discussing the base model (Table 5 and Figure
1), this processing advantage for forms in nominative case might
be due to its syntactic simplicity, given that it encompasses only
three functions and meanings.

As only a relatively small number of neuter nouns was included
in the materials, the interaction of gender with weighted relative
entropy basically contrasts masculine with feminine nouns. It turns
out that the interaction of Weighted Relative Entropy 
 Gender is
matched by an imbalance in average relative entropy in the Serbian
lexicon. Leaving the primes in the present experiment aside, we
find that the average relative entropy was 0.17 for feminine nouns
and 0.25 for masculine nouns, a difference of 0.08 that received
ample statistical support (p � .0001). The greater relative en-
tropy for masculine case forms indicates a more challenging learn-
ing problem for masculine than feminine nouns, resulting in a
weaker inflectional class prototype and reduced effects of dissim-
ilarity to the prototype in the priming context. This empirical
finding is in line with the fact that the masculine noun class is less
regular than the feminine noun class: The masculine noun class

Table 6
Partial Effects of the Predictors in a Mixed-Effects Model for the
Latencies in Experiment 1, Excluding the No-Prime Condition

Variable Estimate Lower Upper p

Intercept 5.6787 5.5598 5.7954 .0001
Previous RT 0.1173 0.0979 0.1328 .0001
Target position (3rd) 	0.4017 	0.5593 	0.3231 .0001
Trial order (linear) 	0.1170 	0.1280 	0.1064 .0001
Trial order (quadratic) 0.0212 0.0172 0.0255 .0001
Length 0.0099 0.0057 0.0139 .0001
Prime condition (DSSD) 	0.0455 	0.0575 	0.0322 .0001
Prime condition (SS) 	0.1321 	0.1550 	0.1056 .0001
Weighted relative entropy 0.0594 0.0388 0.0795 .0001
Nominative case 	0.0038 	0.0175 0.0101 .5832
Masculine gender 0.0114 	0.0061 0.0280 .2092
Normalized Levenshtein

distance 0.0155 	0.0061 0.0401 .1668
Cosine similarity 	0.0925 	0.1379 	0.0459 .0002
Target lemma frequency 	0.0121 	0.0190 	0.0057 .0002
Prime word frequency 	0.0041 	0.0076 	0.0011 .0122
Previous RT 
 Target

Position (3rd) 0.0664 0.0536 0.0905 .0001
Nominative Case 


Weighted Relative
Entropy 	0.0513 	0.0740 	0.0288 .0001

Masculine Gender 

Weighted Relative
Entropy 	0.0372 	0.0607 	0.0107 .0026

Note. Lower, upper � 95% highest posterior density credible intervals
based on 10,000 samples from the posterior distribution of the parameters;
p � Markov chain Monte Carlo p value; RT � reaction time; DSSD �
different stem and same inflection or different inflection and same stem;
SS � identical stem and inflection.
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exhibits exponent (affixal) differences between animate and inan-
imate nouns and various other inconsistencies that are not present
in the feminine noun class (see, e.g., Stanojčić & Popović, 2005;
Stevanović, 1989). There is no difference between the case forms

with respect to relative entropy, so it is unlikely that the interaction
of Weighted Relative Entropy 
 Case is driven by the distribu-
tional properties of the input.

Considering Experiments 1 and 2 jointly, we conclude that the
present entropy-based measures are well supported as probes for
paradigmatic effects in lexical processing. This raises the question
of how to interpret these paradigmatic entropy effects. One pos-
sibility would be to assume that inflected variants are stored and
organized into paradigmatic tables in long-term memory. In this
line of reasoning, however, it remains unclear how entropy effects
might actually arise during lexical access. We therefore explored a
different possibility, namely, that paradigmatic entropy effects
emerge straightforwardly as a consequence of discriminative
learning. In particular, we predicted that an interaction of
Weighted Relative Entropy 
 Gender but not the interaction of
Weighted Relative Entropy 
 Case would be replicable in an
input-driven associative learning approach.

A Model Based on Naive Discriminative Learning

Our interest in discriminative learning was sparked by the
studies of Ramscar and colleagues (Ramscar & Yarlett, 2007;
Ramscar, Yarlett, Dye, Denny, & Thorpe, 2010). Ramscar and
colleagues made use of the Rescorla–Wagner equations to simu-
late the time course of lexical learning. However, there are other

Figure 2. Partial effects of selected predictors in a mixed-effects model for the reading latencies in Experiment
1, excluding the no-prime condition. For simple main effects, dashed lines represent 95% highest posterior
density credible intervals.

Table 7
Coefficients of the Mixed-Effects Model Fitted to the Lexical
Decision Latencies of Experiment 2

Variable Estimate Lower Upper p

Intercept 5.8485 5.7344 5.9298 .0001
Previous RT 0.1028 0.0919 0.1191 .0001
Trial order (linear) 	0.0085 	0.0125 	0.0044 .0001
Trial order (quadratic) 0.0083 0.0052 0.0113 .0001
Length 0.0075 0.0032 0.0119 .0006
Prime condition (DSSD) 	0.0088 	0.0168 	0.0005 .0336
Prime condition (SS) 	0.1041 	0.1191 	0.0893 .0001
Weighted relative entropy 0.0174 0.0031 0.0277 .0160
Normalized Levenshtein distance 0.0567 0.0408 0.0733 .0001
Target word frequency 	0.0285 	0.0337 	0.0232 .0001
Prime word frequency 	0.0055 	0.0081 	0.0029 .0001

Note. Lower, upper � 95% highest posterior density credible intervals
based on 10,000 samples from the posterior distribution of the parameters;
p � Markov chain Monte Carlo p value; RT � reaction time; DSSD �
different stem and same inflection or different inflection and same stem;
SS � identical stem and inflection.
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relevant psycholinguistic studies that made use of the Rescorla–
Wagner model, for example, Hsu, Chater, and Vitányi (2011) and
St. Clair, Monaghan, and Ramscar (2009) on language acquisition
and Ellis (2006) on second language learning.

The Rescorla–Wagner model is deeply rooted in the cognitive psy-
chology tradition (cf. Miller, Barnet, & Grahame, 1995; Siegel & Allan,

1996). Amazingly fruitful, it has been closely linked with several well-
known and well-defined probabilistic algorithms, such as the connection-
ist delta-rule (cf. J. R. Anderson, 2000, Gluck & Bower, 1988) and the
Kalman filter (cf. Dayan & Kakade, 2001). Recently, it has been dis-
cussed as an instance of a general probabilistic learning mechanism (see,
e.g., Chater, Tenenbaum, & Yuille, 2006; Hsu et al., 2011).

Figure 3. Partial effects in the mixed-model fitted to the lexical decision latencies (Experiment 2), excluding
the no-prime condition. Dotted lines represent 95% highest posterior density credible intervals. RT � reaction
time; DD � different stem and different inflection; DSSD � different stem and same inflection or different
inflection and same stem; SS � identical stem and inflection; Norm. Levenshtein Dist. � normalized Leven-
shtein distance.
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Complementing the approach of Ramscar and colleagues
(Ramscar & Yarlett, 2007; Ramscar et al., 2010), our modeling
effort focuses on the end result of the lexical learning process,
when the system is in a state of equilibrium. In this incarnation
of the model of Wagner and Rescorla (1972), cues are associ-
ated with an outcome. Both cues and outcomes can either be
present or be absent. For our purposes, cues are segment (letter)
unigrams and bigrams (for a more complete orthographic cod-
ing scheme, see Whitney, 2001) and outcomes are meanings,
ranging from the meanings of words (house, table) and inflec-
tional meanings (e.g., case: nominative, genitive, dative, accu-
sative, instrumental, locative; number: singular, plural) to af-
fixal meanings (e.g., -ness or un-).

Let PRESENT �X, t� denote the presence of cue or outcome X
at time t and ABSENT �X, t� denote the absence of cue or outcome
at time t. The Rescorla–Wagner equations specify the association
strength Vi

t�1 of cue Ci with outcome O at time t � 1 as

V i
t�1 � V i

t � �V i
t. (6)

The change in association strength, �Vi
t, is defined as

�V i
t � �0 if ABSENT�Cj, t�

�i 1�� � �PRESENT�Cj, t�Vj� if PRESENT �Cj, t� & PRESENT�O, t�
�i 2�0 � �PRESENT�Cj, t�Vj� if PRESENT �Cj, t� & ABSENT�O, t�

(7)

with the standard settings for the parameters: � � 1, all �s
equal, and 1 � 2. The association strength of a cue to an
outcome is strengthened when cue and outcome co-occur. The
association strength is decreased whenever the cue occurs with-
out the outcome being present. The extent to which an associ-
ation strength is adjusted depends on the number of other cues
present. When there are more cues present simultaneously,
positive adjustments are smaller and negative adjustments are
larger, and vice versa. It is worth noting, as pointed out by
Rescorla (1988), that this approach to learning differs funda-
mentally from the theories of Pavlovian learning that dominated
the field until the early sixties of the previous century. Current
emphasis is on the context of learning and the learning of
relations among events, which allows an organism to build a
representation of its environment. In particular, the information
that one event provides about another is crucial. Thus, Gallistel
(2003) argued that only informative events can elicit condition-
ing (p. 93). More specifically, he claimed that learning can
occur if and only if there is a divergence between the observed
entropy of a potentially informative event and the maximum
entropy—that is, if the event has nonrandom property (see also
Gallistel & Gibbon, 2002. For neurobiological results, see Daw
& Shohamy, 2008; Schultz, 2002).

For an illustration of how association strengths develop over
time, consider Table 8 and Figure 4. Table 8 presents a small
artificial lexicon with word forms, their frequencies of occur-
rence, and their meanings. For ease of exposition, we use
examples from English. The letters (unigrams) of the word
constitute the cues for the model, and the meanings represent
the outcomes. When the 419 tokens of the 10 words are pre-
sented 25 times in randomized order, association strengths
develop over time, as illustrated in Figure 4. The upper left
panel presents the association strength for h and “hand.” The h

occurs only in the words hand and hands. As it is a perfect cue
for the meaning “hand,” its association strength is increased
whenever hand or hands is encountered. It is never decreased,
as there are no words containing an h that do not map onto the
meaning “hand.”

The upper right panel shows the development of the association
strength of the s with the plural meaning. As the s occurs not only
in plurals but also in sad, as, and lass, it is not an unequivocal cue
for plurality. Depending on the order in which plural and nonplural
exemplars are encountered, its association strength with the plural
meaning increases or decreases. The general trend over time, for
this small lexicon, is for this association strength to increase. The
remaining two panels illustrate that for the short word as, the a
becomes strongly linked with its meaning, whereas the s becomes
a negative cue.

In this simple example, the s becomes a marker of plurality,
irrespective of its positions, which linguistically does not make
sense. In our actual simulations, we included as cues not only letter
unigrams but also letter bigrams, with a word-initial s represented
as #s and a word-final -s represented as s#. In our model for
English, discussed below, the association strength for the unigram
s to plurality in the stable state is negative (	0.008); for #s it is
positive but small (0.003), and for s# it is positive but large
(0.018). With a better coding scheme and realistic language input,
linguistically sensible results are obtained.

What is worth noting for the purpose of present study is that the
Rescorla–Wagner algorithm performs maximum-likelihood esti-
mation of the parameters for models of causal learning and/or
causal inference (Yuille, 2005, 2006), clarifying the often intricate
probabilistic interrelationship between a system and its environ-
ment. The Rescorla–Wagner algorithm provides the maximum-
likelihood estimates of the weights on the connections between
letter unigrams and bigrams and word meanings.

Danks (2003) proposed an efficient way for obtaining these
maximum likelihood estimates by examining the system when it is
in a stable state. Danks called attention to the fact that an asymp-
tote for the Rescorla–Wagner model is in general not well defined.
However, one can think of the model settling down eventually into
a state where the expected changes in the weights are zero (V i

t � 1 � V i
t ;

i.e., V i
t�1	Vi

t�0). Danks showed that in this equilibrium
state the association strengths Vi of the cues C to a specific
outcome O can be obtained by solving the system of equa-
tions (8), where n � 1 denotes the number of different cues
(input features) and where the indices i and j range over the
different cues:

Table 8
Example Lexicon for Naive Discriminative Learning

Word Frequency Lexical meaning Number

hand 10 hand
hands 20 hand plural
land 8 land
lands 3 land plural
and 35 and
sad 18 sad
as 35 as
lad 102 lad
lads 54 lad plural
lass 134 lass
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�
Pr�C0 � C0� Pr�C1 � C0� . . . Pr�Cn � C0�
Pr�C0 � C1� Pr�C1 � C1� . . . Pr�Cn � C1�

. . . . . . . . . . . .
Pr�C0 � Cn� Pr�C1 � Cn� . . . Pr�Cn � Cn�

� �
V0

V1

. . .
Vn

�
� �

Pr�O � C0�
Pr�O � C1�

. . .
Pr�O � Cn

� . (8)

or, in short,

Pr�O�Ci� � �
j�0

n

Pr�Cj � Ci�Vj � 0. (9)

Here, Pr�Cj � Ci� represents the conditional probability of cue Cj

given cue Ci, and Pr�O � Ci� represents the conditional proba-
bility of outcome O given cue Ci. Informally, the association
strengths Vj can be thought of as optimizing the conditional
outcomes, given the conditional probabilities characterizing the
input space. The estimation of the association strengths (or
weights on the connections from cues to outcomes) with (8) is
parameter free and is totally determined by the training data.
The Appendix provides detailed information on the steps re-
quired to calculate the equilibrium association strengths for the
example lexicon in Table 8. The stable-state association
strengths (connection weights) for the examples in Figure 4 are
represented by dashed lines.

We model the association strengths from the letter unigrams and
bigrams (cues) to a given meaning (outcome) separately and
independently of all other outcomes. In other words, for each
meaning a different O is substituted in (8), and a different set of
equations has to be solved. The assumption of independence for
the association strengths to the different meanings involves an
obvious simplification. This simplifying assumption, which is sim-
ilar to the independence assumption in naive Bayes classifiers,
affords efficient computation while yielding adequate results. Our
model therefore implements a form of associative learning that we
refer to as naive discriminative learning.

Let i range over the outcomes (meanings) and j range over the
cues (unigrams and bigrams), and define the association strength
Vji to denote the equilibrium association strength Vj as estimated
for cue Cj and outcome Oi. Given the set of input cues �Ck�, the
activation ai of outcome Oi is given by

ai � �
j��Ck�

Vji. (10)

The activation of the i-th meaning ai represents the total posterior
evidence for this meaning, given the unigrams and bigrams in the
input. (In our experience, adding trigrams and higher order
n-grams leads to only a minute increase in goodness of fit.)
Response latencies and self-paced reading times are assumed to be
negatively correlated with this total posterior evidence. When the
weights are estimated from small data sets, it is sufficient to model
RTs simply as

Figure 4. Development of association strengths of unigram cues to meanings when the Rescorla–Wagner
model is exposed to the words in Table 8. Word tokens are presented in random order. To show the long-term
development of the association strength, each token is presented 25 times (i.e., each word frequency is multiplied
by 25). Dashed lines represent the stable-state association strength obtained with the equilibrium equations of
Danks (2003). t � time.
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simulated RTi � �ai. (11)

For large training data, it is preferable to model response latencies
as inversely proportional to the amount of activation ai. Similar to
the empirical distributions of lexical decision latencies, the distri-
bution of activations a tends to have a rightward skew. This skew
is often largely eliminated by a log-transform,

simulated RT i � log�1/ai�. (12)

In what follows, we use the transform that best approximates
normality, just as for the observed latencies, in order to obtain
maximally adequate statistical models (for further discussion of
transformations of the response variable in statistical modeling, see
Baayen & Milin, 2010). This completes the definition of our
model, which we refer to as the naive discriminative reader.

Modeling the Processing of Case Inflections in Serbian

In what follows, we restrict ourselves to a discussion of simu-
lating the self-paced reading latencies of Experiment 1. The results
obtained for the lexical decision latencies of Experiment 2 were
similar quantitatively and qualitatively and will not be discussed
further. The results of Experiment 1 revealed a slightly more
complex pattern of results and therefore provide the more inter-
esting data set to model and report. A first challenge to the naive
discriminative reader is that its predictions should reflect the
observed effect of weighted relative entropy. Because exponents
can be multiply ambiguous, a second challenge for the discrimi-
native learning approach is how effective these exponents can be
as cues for case and number.

The model was trained on the set of 270 nouns and their
case-inflected forms (3,240 word forms in all), which appeared at
least once in each combination of case and number in the Fre-
quency Dictionary of Contemporary Serbian Language (D. Kostić,
1999). For this data set, training simply proceeded on the basis of
individual words, without context.

For unprimed reading, the total activation predicting a word’s
processing time is defined as the sum of the activations of its lexical
meaning and the grammatical meanings for number (singular and
plural) and case (nominative, genitive, dative, accusative, locative,
and instrumental). In other words, we assume that a word’s inflec-
tional paradigm comes into play at the level of (grammatical) mean-
ing. It is important to distinguish this semantic paradigm from a
traditional form paradigm, comprising a word’s different forms, as in
Table 1. The model has no representations for word forms, and there
is no competition between word forms in the model, nor the merging
of evidence for them. Our hypothesis is that a self-paced reading time
and a lexical decision latency are proportional to the cumulative
activation of the word’s meaning and its semantic paradigm (as
activated by its orthographic cues).

In order to simulate priming, we first calculated for prime and
target separately the activation of the meanings of the two nouns,
as well as the activation of the meanings for singular and plural
number and those of nominative, genitive, dative, accusative,
locative, and instrumental case. The two resulting sets of 10
activations were then used to estimate a primed decision time.

For the modeling of priming, we explored two alternatives, both
of which turned out to yield good results. The first alternative
builds on the way priming is modeled in the original Rescorla–

Wagner framework, and the second alternative follows the re-
trieval theory of priming proposed by Ratcliff and McKoon
(1988). To illustrate the two alternatives, let a �P be the 10-element
vector of the meaning activations for the prime, and let a �T denote
the corresponding vector of activations for the target, with each
meaning activation as defined in (10).

In the original Rescorla–Wagner model, when input cues (stim-
uli) are presented in isolation, the total activation amounts to a
simple sum of association strengths (�i�1

10 ai). The maximum
strength � � 1 in (7) cancels out in the derivation of the
equilibrium equations (8). However, in the case of “compound
cues” consisting of a prime and a target, simple learning becomes
competitive learning, and the maximum strength (�) must be
shared between the competing cues (see J. R. Anderson, 2000;
Brandon, Vogel, & Wagner, 2003; Vogel, Brandon, & Wagner,
2003). For � � 1, this leads to a revised system of equations, also
defined by Danks (2003):

�Pr�O�Ci� � �
j�0

n

Pr�Cj � Ci�Vj � 0. (13)

In the case of priming, we have two sets of competing cues. The
maximum activation is shared between them: �P � �T � �. Setting
� to 1, the compound activation (aPT) follows straightforwardly:

aPT � �
i�1

10

��PaPi � �TaTi�

� �
i�1

10

��PaPi � �1 � �P�aTi� �0 � �P � 1�. (14)

Competitive learning in the Rescorla–Wagner model predicts that the
addition of a prime leads to decreased activation of the target’s
meaning and, hence, to longer response latencies. For a prime totally
unrelated to the meaning of the target, for instance, the weights on the
links of the prime to the target’s meaning will be small or even
negative, leading to small or even negative aPi in (14).

The retrieval theory of priming developed by Ratcliff and McK-
oon (1988) defines the familiarity of a compound cue S as follows:

S � �
i�1

10

�aPi
w � aTi

1	w� �0 � w � 0.5�, (15)

with w a weight for capturing the relative importance of the prime
compared to the target. Good fits were obtained with both (14) and
(15), for a wide range of values of �P and w. The results for the
compound cue theory were slightly better; hence, we restrict ourselves
to reporting the results using (15), with w�0.2.1

Using compound cue strength as dependent variable, with w �
0.4, we obtained a distribution of simulated response latencies for
which log or inverse transforms did not lead to improved approx-
imation of normality. Therefore, simulated response latencies were

1 Data and code are available in the ndl package for the R free software
environment for statistical computing and graphics, available in the CRAN
archives (http://cran.r-project.org/).
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defined as negative compound cue strength. The simulated laten-
cies correlated well with the observed latencies: r�.24,
t(1185)�8.58, p�.0001. We fitted the same regression
model to the simulated latencies as fitted to the observed
latencies, with as exception the experimental control pre-
dictors trial, previous RT, and the sentential predictor target
position (second or third position in the sentence). The
cosine similarity measure and the interaction of Weighted
Relative Entropy 
 Case did not reach significance. We
then refitted the models with these latter two predictors
excluded.

There is one predictor for which the model makes the opposite
prediction. Whereas word length is inhibitory for the observed
latencies, it is facilitatory for the simulated latencies. In the model,
a longer word provides more activation to its associated lexical
meaning (as well as to its grammatical meanings). A longer word
has more active orthographic cues, and hence more connection
strengths are summed to obtain the activation of its lexical mean-
ing (and its grammatical meanings). Due to greater activation of its
lexical meaning (and its grammatical meanings), the response
latency to a longer word is predicted to be shorter. The model is
blind to the increasing likelihood of multiple fixations for longer
words and the associated increase in processing costs.

To bring the cost of additional fixations for longer words into
the model, we redefined the simulated response latencies as fol-
lows, with Si the compound cue strength for the i-th word and li the
length (in letters) of that word:

simulated RT i � Si � �I�li�5�. (16)

For words with more than five letters, the expression I�li�5� eval-
uates to 1, and a fixation penalty � is added to the simulated
latency. Table 9 and Figure 5 summarize the resulting model.

Here and in the simulations following below, we accept as a
valid insight the prediction of the model that longer words provide
more evidence for a word’s meaning than do shorter words. This
probabilistic advantage of a longer word for making contact with
its meaning may help explain the U-shaped functional form of the

effect of word length reported by Baayen (2005) and New, Fer-
rand, Pallier, and Brysbaert (2006) for English. For the shorter
word lengths, a greater length combines with shorter response
latencies. For the longer word lengths, facilitation reverses into
inhibition. The facilitation for the shorter word lengths fits well
with the prediction of the model that more bottom-up information
provides more support for a word’s lexical meaning (as well as its
grammatical meanings). The increased processing costs for longer
words are, in the present approach, the straightforward conse-
quence of multiple fixations and saccades, a physiological factor
unrelated to discriminative learning. It is crucial that it is not the
length in letters that is inhibitory in our approach but whether more
than one fixation is required. With � � 0.3, the by-item corre-
lation of the observed and simulated latencies improved slightly
from .24 to r � .26, t�1185� � 9.17, p � .0001. Qualita-
tively, the effect of the other predictors in the model was not
affected.

The second panel of Figure 5 shows the combined effect of
prime condition and normalized Levenshtein distance. The nor-
malized Levenshtein distance is zero for the identity primes and
nonzero for the other two prime conditions. We therefore plot their
joint effect. Although the statistical models for the observed and
simulated latencies assign different weights to the treatment con-
trasts of prime condition and to the slope of the Levenshtein
distance, the predictions of the two models are very similar: The
simulated latencies faithfully reflect the priming effects. The main
difference between the two regression models is that for the
simulated latencies, the Levenshtein distance is assigned greater
weight, unsurprisingly, as the model has not been provided with
any information on the discrete category mismatches of stems and
case endings.

The third panel clarifies that the model adequately captures the
facilitation of target lemma frequency, although it underestimates
the magnitude of the slope. The fourth panel shows it properly
accounts for the form frequency of the prime. It is worth noting
that the model’s association strengths are estimated on the basis of
absolute word frequencies but that in the regression model the
log-transformed frequency is used, exactly as for the observed
reaction times. The effect of frequency of occurrence expresses
itself linearly on a logarithmic scale in both observed and simu-
lated latencies.

The final panel presents the interaction of Weighted Relative
Entropy 
 Gender, which reaches significance for the simulated
latencies just as for the observed latencies. The model even pre-
dicts a slight processing advantage for masculine nouns as entropy
increases, which was not detectable for the observed latencies. The
emergence of a significant interaction of Weighted Relative En-
tropy 
 Gender is exactly as predicted by the greater relative
entropy that characterizes masculine nouns in Serbian.

As discussed above, the cosine similarity measure reached sig-
nificance only in the sentence reading task and not in isolated word
recognition. The absence of cosine similarity as a predictor for the
simulated latencies is therefore as expected. The insignificant
effect of case (in interaction with relative entropy) in the model for
the simulated latencies is expected, given that we have no evidence
suggesting that the distributional properties of the nominative case
forms are very different from those of the oblique case forms. As
the nominative case carries the lowest number of functions and
meanings of the case endings (A. Kostić et al., 2003), and as in our

Table 9
Coefficients Estimated for the Simulated Self-Paced
Reading Latencies

Variable Estimate
Standard

error t p

Intercept 	12.084 0.104 	115.854 .0000
Word length 0.058 0.007 8.131 .0000
Weighted relative entropy

(WRE) 0.185 0.038 4.823 .0000
Masculine gender � true 0.169 0.033 5.173 .0000
Normalized Levenshtein

distance 1.201 0.062 19.303 .0000
Target lemma frequency 	0.135 0.011 	11.909 .0000
Prime form frequency 	0.019 0.008 	2.282 .0227
Prime condition � DSSD 	0.028 0.035 	0.797 .4257
Prime condition � SS 0.158 0.068 2.346 .0192
WRE: Masculine gender �

true 	0.252 0.053 	4.783 .0000

Note. DSSD � different stem and same inflection or different inflection
and same stem; SS � identical stem and inflection.
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model the different functions and meanings of the cases are not
specified, with all cases being treated equal, no special advantage
for the nominative can emerge.

In summary, the present discriminative learning approach has
succeeded in approximating well the effects of a series of lexical
variables, including weighted relative entropy. The model captures
the effect of Weighted Relative Entropy without having to posit
exemplars for individual inflected forms, and without having to
specify explicitly prototypes for each inflectional class. It does so
with only two free parameters, the compound cue weight w for the
prime in (15), and the fixation penalty parameter �.

The second challenge for the naive discriminative reader men-
tioned above is whether the model is sufficiently sensitive for
handling the multiple ambiguity of the exponents expressing case
and number. Some indication of the model’s performance is pro-
vided by Figure 6, which presents, for each form of the feminine
noun žena, the activations of the number and case meanings. For
four forms, žena, žene, ženu, and ženom, the possible meanings
(marked by triangles) have the highest activations. Ženu, for in-
stance, is the accusative singular form, and these two meanings are
appropriately activated most strongly in the model. For ženama,
we see interference from the -a exponent, which is embedded in
the ama exponent. For ženi, we have interference from the -i

exponent expressing nominative plural in masculine nouns. In
other words, all the model does is to make available the most likely
readings of the exponents, given the input. Further top-down
processes should be brought into the model in order to account for

Figure 5. Partial effects of the significant predictors for the simulated self-paced reading latencies. The effect
of prime condition in the second panel represents the combined effect of this factor and of the normalized
Levenshtein distance. Solid lines represent simulated latencies; dashed lines represent the observed latencies. In
the last panel the gray lines represent masculine nouns and the black lines represent neuter and feminine nouns.
RT � reaction time; DD � different stem and different inflection; DSSD � different stem and same inflection
or different inflection and same stem; SS � identical stem and inflection.

Figure 6. Activation of case and number meanings for the six inflected
forms of žena. Triangles represent meanings that, in the absence of context,
are possible and appropriate for a given form.
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the selection of the appropriate subsets of meanings, given addi-
tional lexical and contextual information.

A final question awaiting clarification at this point is what
exactly the relative entropy is capturing, both in the human data
and in the simulation. We address this question with the help of a
simple constructed example. Table 10 presents a lexicon with four
case-inflected forms for each of six lemmas. There are three
different cases, nominative (nom), genitive (gen), and accusative
(acc). The accusative is indexed by two different exponents, a and
u. The a also occurs as a marker of the nominative and, hence, is
ambiguous as to which case it represents. In this example, expo-
nents (in lowercase) never occur as stem segments (in uppercase).
For each lemma, we calculated the relative entropy of the cases.
For the first word form, p � �10/100, 20/100, 70/100�, and
because q � �0.246, 0.246, 0.501�, the relative entropy is
��plog2� p/q�� � 0.134. The �p� distribution represents the
exemplar, and �q� the represents the prototypical probability dis-
tribution.

To this data set, we fitted a logistic mixed-effects model, pre-
dicting nominative versus other cases from Exponent (a, i, u) as
fixed-effect factor and lemma as random-effect factor. The random
intercepts estimated for the lemmas are listed in Table 10 as Ranef
Nom. The left panel of Figure 7 graphs the functional relation
between relative entropy and the random intercepts. A greater
(positive) random intercept implies that the lemma has a stronger
preference for being used in the nominative. Conversely, large
negative values indicate that the nominative is disfavored by a
lemma. A random intercept equal to zero indicates no divergence
from the average preference (log odds) for the nominative. The
quadratic relation between entropy and the random intercepts is

due to relative entropy being an unsigned measure. It captures the
extent to which a lemma’s preference for the nominative deviates
from the population average without indicating whether this pref-
erence is due to attraction or repulsion. What this example illus-
trates is that relative entropy provides a nonparametric, unsigned
alternative to the random intercepts of a logistic mixed-effects
classifier.

We also fitted the naive discriminative reader model to this data set,
using only unigrams as orthographic cues. Table 10 lists several
statistics derived from the model’s weight matrix. The support pro-
vided by the stem letters to the nominative, normed to the probability
scale, is provided in the column listed as Stem Support Nom. As can
be seen in the second panel of Figure 7, relative entropy and stem
support nom are again related through a quadratic polynomial, which
is virtually identical to the one for relative entropy and the random
intercepts. This does not come as a surprise, as the random intercepts
and stem support nom are nearly perfectly linearly related, as shown
in the third panel of Figure 7. In other words, the function of the
random intercepts in the logistic mixed-effects model, the calibration
of the lemmas’ individual preferences for the nominative, is carried in
the naive discriminative reader by the support from the cues com-
prised by the stem.

Table 10 also lists the support of the stem for genitive case
(Stem Support Gen) and for accusative case (Stem Support Acc),
and the support of the word form’s exponent for its corresponding
case. As genitive case corresponds one-to-one with the presence of
the i exponent, genitive case is well supported whenever the i is
present (0.74), but there is no differentiation in the support pro-
vided by the cues provided by the stem (0.26 for all lemmas). This
example illustrates that the naive discriminative learning algo-

Table 10
Simulated Lexicon and Associated Statistics

Word form Frequency Case Lemma Relative entropy Ranef nom Ranef acc
Stem support

nom
Stem support

gen
Stem support

acc
Exponent
support

AQEa 10 nom A 0.134 	1.121 1.121 	0.014 0.260 0.533 0.353
AQEi 20 gen A 0.134 	1.121 1.121 	0.014 0.260 0.533 0.740
AQEu 30 acc A 0.134 	1.121 1.121 	0.014 0.260 0.533 0.595
AQEa 40 acc A 0.134 	1.121 1.121 	0.014 0.260 0.533 0.127
ABCa 15 nom B 0.053 	0.676 0.676 0.037 0.260 0.482 0.353
ABCi 22 gen B 0.053 	0.676 0.676 0.037 0.260 0.482 0.740
ABCu 28 acc B 0.053 	0.676 0.676 0.037 0.260 0.482 0.595
ABCa 35 acc B 0.053 	0.676 0.676 0.037 0.260 0.482 0.127
APQa 20 nom C 0.010 	0.288 0.288 0.087 0.260 0.432 0.353
APQi 24 gen C 0.010 	0.288 0.288 0.087 0.260 0.432 0.740
APQu 26 acc C 0.010 	0.288 0.288 0.087 0.260 0.432 0.595
APQa 30 acc C 0.010 	0.288 0.288 0.087 0.260 0.432 0.127
ZPEa 30 nom D 0.007 0.243 	0.243 0.162 0.260 0.357 0.353
ZPEi 26 gen D 0.007 0.243 	0.243 0.162 0.260 0.357 0.740
ZPEu 24 acc D 0.007 0.243 	0.243 0.162 0.260 0.357 0.595
ZPEa 25 acc D 0.007 0.243 	0.243 0.162 0.260 0.357 0.127
EPBa 35 nom E 0.039 0.583 	0.583 0.210 0.260 0.309 0.353
EPBi 28 gen E 0.039 0.583 	0.583 0.210 0.260 0.309 0.740
EPBu 22 acc E 0.039 0.583 	0.583 0.210 0.260 0.309 0.595
EPBa 20 acc E 0.039 0.583 	0.583 0.210 0.260 0.309 0.127
DPBa 40 nom F 0.139 1.269 	1.269 0.289 0.260 0.230 0.353
DPBi 30 gen F 0.139 1.269 	1.269 0.289 0.260 0.230 0.740
DPBu 20 acc F 0.139 1.269 	1.269 0.289 0.260 0.230 0.595
DPBa 10 acc F 0.139 1.269 	1.269 0.289 0.260 0.230 0.127

Note. Word forms have stems in uppercase and suffixes in lowercase. Ranef � random-effect estimate; nom � nominative; acc � accusative; gen � genitive.
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rithm, when presented with a truly agglutinative exponent, detects
the one-to-one mapping of form to meaning. The special case of
agglutination is captured naturally in our approach without requir-
ing any further mechanisms. By contrast, theories that assume
processing is grounded in an item-and-arrangement
(representation-plus-rules) architecture cannot be extended to ac-
count for the complexities of nonagglutinative morphological sys-
tems without many ad hoc assumptions.

In this example, the a exponent is ambiguous between nomina-
tive and accusative. The random intercepts in a model predicting
the accusative and the stem support for the accusative show the
same correlational structure as shown in Figure 7 for the nomina-
tive. However, the stem support for the accusative is negatively
correlated with the stem support for the nominative (r � 	1),
due to the way in which the form frequencies were assigned to the
inflected variants of the lemmas, gradually changing from
�10, 20, 30, 40� to �40, 30, 20, 10�.

When case endings are ambiguous, as is the case for the a
exponent in the present example, the weights from such an expo-
nent to its case meanings cannot differentiate between the individ-
ual preferences of the lemmas. In other words, these weights do
not enter into correlations with relative entropy. They represent the
model’s best guess, its probabilistic generalization, about the most
likely meanings, optimizing across all lemmas.

We note here that the quadratic functions in Figure 7 are due to
the gradual changes in the frequencies of the inflected forms,
ranging from �10, 20, 30, 40� for Lemma A to �40, 30, 20, 10�
for Lemma F. For distributions for which a majority of relative
entropies reflect attraction (or all reflect repulsion), the relation
between relative entropy and random intercepts (and stem support)
can be roughly linear, with a slope that can be both positive and
negative. For an example discussing the statistical analysis of an
empirical data set, see Baayen (in press).

How exactly the effects of relative entropy work out for a given
data set is highly dependent on the distributional characteristics of that
data set. For the Serbian data, interpretation is complicated further by
the presence of subliminal primes. Nevertheless, the prediction that

follows from the above considerations for the Serbian data is that the
effect of weighted relative entropy should reflect the support provided
by the cues of the noun stems for the meanings of the case endings.
We therefore calculated the stem support for each of the cases (nom-
inative, genitive, etc.). We first inspected whether the weighted rela-
tive entropy could be predicted from the summed support for the cases
in interaction with grammatical gender. This was indeed the case: For
nonmasculine nouns, the total support correlated negatively with
weighted relative entropy, and for masculine nouns the correlation
was positive (p � .0001 for the coefficients of both the two main
effects and the interaction). We then defined a simplified simulated
response latency as negative total support (as greater total support
should contribute to a shorter response latency) and examined
whether this simulated RT was predictable from weighted relative
entropy in interaction with grammatical gender. We obtained results
very similar to those listed in Table 9, with a positive slope for
weighted relative entropy for nonmasculine nouns and a negative
slope for masculine nouns (ps � .0001).

In summary, the (weighted) relative entropy measure, as
applied to case paradigms, is a nonparametric and unsigned
measure of the degree of attraction (or repulsion) for a given
lemma to the average (population) probability distribution of
case endings. The naive discriminative reader explains this
attraction (or repulsion) in the empirical data as originating in
the association of stem cues to case meanings as a result of
discriminative learning. We note here that the association of
stem cues to case meanings and the relative entropy effects that
bear witness to these associations challenge linguistic theories
that regard agglutination, in the sense of item-and-arrangement,
as the underlying formal property of morphology.

Modeling Morphological Processing in English: From
Simple Words to Prepositional Paradigms

We have seen that a model based on naive discriminative
learning correctly replicates the effects of a wide range of predic-
tors, including weighted relative entropy, observed to codetermine

Figure 7. Scatter plots and Pearson and Spearman correlation coefficients for the probabilities of the
nominative predicted by the naive discriminative reader, the by-lemma random intercepts in a logistic mixed-
effects model, and the relative entropies of the lemmata.
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the sentential reading of Serbian case-inflected nouns. The input to
the model, however, is limited to just 3,240 word forms of those
270 nouns for which all case forms are attested in the Frequency
Dictionary of Contemporary Serbian Language (D. Kostić, 1999).
As a consequence, the results obtained might be due to overfitting.

To rule out this possibility and to obtain further insight in the
potential of naive discriminative learning for understanding mor-
phological processing, we trained the model on a substantial part
of the British National Corpus (henceforth BNC; Burnard, 1995)
and pitted the predictions of the model against the by-item average
lexical decision latencies available in the English Lexicon Project
(henceforth ELP; Balota et al., 2004) as well as in previously
published data sets.

In what follows, we first introduce the corpus data used to set
the weights of the Rescorla–Wagner network that is the engine of
the naive discriminative reader. We then discuss morphological
effects across simple words, inflected words, derived words,
pseudo-derived words, and compounding. Next, we consider
whether phrasal frequency effects might also be captured within
the same modeling framework. We conclude with showing that the
paradigmatic exemplar-prototype effects characterizing the read-
ing of Serbian nouns are also present in English, using as example
the English equivalent of Serbian case paradigms: prepositional
paradigms.

The Training Data

From the CELEX lexical database (Baayen, Piepenbrock, &
Gulikers, 1995), we extracted all monomorphemic nouns,
verbs, and adjectives, as well as all compounds and derived
words with a monomorphemic noun, verb, or adjective as base
word. For each of these words, forms inflected for number,
person, tense and aspect were also extracted. This set of words
was complemented with the word stimuli used in the studies of
Rastle et al. (2004); Bergen (2004); and Christianson, Johnson,
and Rayner (2005), resulting in a lexicon with 24,710 different
words (word types).

All instances of the words in our lexicon that occurred in the
constructions listed in Table 11 were retrieved from the BNC,
together with the preceding words in these constructions. Function

words in the constructions were restricted to those occurring in a
precompiled list of 103 determiners, prepositions, pronouns, and
adverbs. Those words that did not appear in these constructions but
that were used as stimuli in published experiments were extracted
from the BNC, together with the preceding word (when not sen-
tence initial). Constructions with non-ASCII characters were dis-
carded. The resulting phrasal lexicon comprised 1,496,103 differ-
ent phrase types and 11,172,554 phrase tokens, to a total of
26,441,155 words (tokens), slightly more than a quarter of the total
corpus size.

In summary, the input to the naive discriminative reader in the
simulation studies below is a realistic sample of English words
with simple morphological structure, in a wide range of locally
restricted syntactic contexts as attested in the BNC. The connec-
tion weights of the Rescorla–Wagner network were calculated by
solving the equilibrium equations (8). All following simulation are
based on the resulting matrix of connection weights.

Simple Words

Although simple words, such as shoe or think, have no internal
syntagmatic morphemic structure, they enter into paradigmatic
relations with inflected words (shoes, thinks) as well as with
derived words and compounds (snowshoe, thinker). The conse-
quences for lexical processing of the entanglement of a simple
word with its inflectional paradigm have been gauged in previous
studies with Shannon’s entropy (Shannon, 1948), a measure that
estimates the amount of information carried by an inflectional
paradigm (Baayen, Feldman, & Schreuder, 2006; Baayen, Levelt,
Schreuder, & Ernestus, 2008; Baayen et al., 2007):

Hi � 	�
k

pk log2� pk�. (17)

In (17), k ranges over a word’s inflectional variants (for shoe, the
singular shoe and the plural shoes; for think, the verb forms think,
thinks, thinking, and thought). The probability pk is the conditional
probability of the k-th word in the paradigm:

pk �
fk

�i fi

, (18)

where fi denotes the frequency of the i-th form in a word’s
inflectional paradigm. In visual lexical decision, inflectional en-
tropy enters into a negative correlation with response latencies. For
simple words, the kind of words under consideration here, Baayen
et al. (2006) showed that information-rich inflectional paradigms
tend to afford shorter reaction times in the visual lexical decision
task.

Simple words are entangled not only with their inflectional
variants but also with the derived words and compounds in which
they occur. The type count of such words (i.e., their morphological
family size) has also been observed to codetermine response
latencies, such that words with greater morphological families are
responded to more quickly (Bertram, Baayen, & Schreuder, 2000;
De Jong et al., 2000; Dijkstra, Moscoso del Prado Martı́n, Schul-
pen, Schreuder, & Baayen, 2005; Moscoso del Prado Martı́n,
Bertram, et al., 2004; Moscoso del Prado Martı́n et al., 2005;
Schreuder & Baayen, 1997). Moscoso del Prado Martı́n, Kostı́c,
and Baayen (2004) showed that the family size count is the upper

Table 11
Constructions Retrieved From the British National Corpus

Phrase type Construction

Preposition � article � noun about a ballet
Preposition � possessive pronoun � noun about her actions
Preposition � X � noun about actual costs
Preposition � noun about achievements
Xs � noun protégé’s abilities
Article � noun a box
Article � X � noun the abdominal appendages
Possessive pronoun � noun their abbots
Article � Xs � noun the accountant’s bill
Pronoun � auxiliary � verb they are arrested
Pronoun � verb he achieves
Auxiliary � verb is abandoning
Article � adjective the acute

Note. Words marked as X were included even when not available in the
initial 24,710-word lexicon.
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bound of the entropy of the conditional probabilities of the family
members, given the family.

We investigated the predictions of the naive discriminative
reader for the simple nouns studied by Baayen et al. (2006), using
as predictors, in addition to family size and inflectional entropy, a
word’s mean bigram frequency, its length, its written frequency, its
neighborhood density (using the N-count measure), its number of
synonyms as listed in WordNet (Fellbaum, 1998), and the fre-
quency ratio of the word’s use as a noun or a verb. We also
included a new predictor, prepositional relative entropy, which is
discussed in more detail below.

For the simulation, we selected from our lexicon the 1,289
monomorphemic words that can be used as nouns for which lexical
decision latencies are available in the ELP. The observed latencies
were inverse transformed (	1,000/RT) to remove most of the
right skew from the distribution. Table 12 lists the coeffi-
cients obtained with a regression model fitted to the empir-
ical lexical decision latencies.

Shorter latencies were typical for more frequent words (written
frequency), for words with large morphological families (family
size), for words with more morphologically complex synonyms
(complex synset count), for words with more information-rich
inflectional paradigms (inflectional entropy), and for words used
more often as nouns than as verbs (noun/verb ratio). The effects of
word length and neighborhood density (N-count) did not reach
significance. Words with greater mean bigram frequency elicited
longer latencies.

The question of interest is whether the processing costs pre-
dicted by the naive discriminative reader reflect the same set of
predictors, with effect sizes of similar magnitude. A good fit can
be obtained by defining the simulated RT simply as log�1/aword�,
in which case the model is parameter free and driven entirely by
the corpus-based input. The fit improves slightly by taking a
word’s strongest competitors into account. We first define the
probability of identification of a word i in its competitor set as

Pid i �
ai

ai � �
j�1

n aj

, (19)

where ai is the activation of the i-th word, aj is the activation of a
competitor, and n is the number of highest activated competitors

taken into account. As Yarkoni, Balota, and Yap (2008) reported
that their Levenshtein-distance-based neighborhood measure per-
forms optimally when the 20 nearest neighbors are considered, we
set n to 20. Response latencies are taken to be proportional to the
reciprocal of the probabilities of identification. To remove the
rightward skew in the distribution of these reciprocals, we defined
simulated RTs as

RT i � log�1/Pidi�. (20)

The correlation for the observed and simulated response latencies was
r�.56, t(1293)�24.09, p�.0001. This correlation is comparable to
the correlations reported by Moscoso del Prado Martı́n (2003) for the
goodness of fit of his connectionist model to the lexical decision
latencies in the ELP. The correlations of simulated and observed
response latencies reported by Norris (2006) for his Bayesian reader
model, for four-letter words, were slightly higher, at .56 ( for recog-
nition threshold .95) and .61 ( for recognition threshold .99).

However, as for the Serbian data, the model predicts facilitation
from word length. We therefore adjusted (20) to bring into the
model the costs of additional fixations for longer words.

RT i � log� 1

Pidi
� �I�li�5�� . (21)

A regression model with exactly the same model specification
that was used for the empirical latencies was fitted to the simulated
latencies, with � � 3.2. The coefficients of this model are listed
in Table 13. All coefficients in the simulated model have the
appropriate sign, and the correlation of the coefficients for the
regression models fitted to the observed and the simulated laten-
cies reached significance r � .87, t(7) � 4.73, p � .0021 (see
Figure 8), indicating that effect sizes are modeled reasonably well.
It is only the N-count measure for which the model predicts a small
but significant positive slope when the observed slope is effec-
tively zero.

It is noteworthy that an effect of morphological family size
emerges in the simulated reaction times without the presence of
any separate representations for complex words in the model.
Similarly, we find an effect of inflectional entropy without the
presence of separate representations for inflected words and with-
out any explicit paradigmatic organization imposed on such rep-
resentations. These effects all fall out straightforwardly from naive
discriminative learning.

In addition to the effects described above, other orthographic fre-
quency measures have been shown to play a role in word processing,
at least in terms of eye-movement patterns during reading. One
measure that is particularly relevant here is orthographic familiarity
(White, 2008), defined as the sum of the token frequencies of the
n-grams within a given word (e.g., in a four-letter word, the two
trigrams, the three bigrams, and four unigrams). Orthographic famil-
iarity has a significant (albeit small) facilitatory effect on several
reading time measures, independently of word-frequency effects. As
n-grams are the very representation the present model adopts to
implement orthographic information, it is no surprise that an effect of
orthographic familiarity emerges in the naive discriminative reader in
the form of a strong bigram frequency effect, with a positive slope as
in the model for the observed latencies. (We have experimented with
including higher order n-grams as cues, but the increase in prediction
accuracy was tiny compared to that when using letter pairs as cues in

Table 12
Coefficients for the Model Fitted to the Observed Response
Latencies of Monomorphemic English Nouns

Variable Estimate
Standard

error t p

Intercept 	1.451 0.051 	28.278 .0000
Mean bigram frequency 0.023 0.008 2.713 .0068
Written frequency 	0.048 0.003 	16.408 .0000
Family size 	0.015 0.006 	2.545 .0111
Length 	0.003 0.008 	0.382 .7022
Noun/verb ratio 	0.004 0.002 	2.109 .0351
Inflectional entropy 	0.039 0.010 	3.927 .0001
Complex synset count 	0.014 0.004 	4.059 .0001
Prepositional relative entropy 0.009 0.003 3.241 .0012
N-count 	0.000 0.001 	0.033 .9739

Note. Complex synset count � no. morphologically complex synonyms;
N-count � neighborhood density.
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addition to letter unigrams.) The model correctly predicts inhibition
for mean bigram frequency, because high-frequency bigrams are
shared between many different words and hence have a low cue
validity for their meanings. As the current implementation of our
model is blind to how the eye extracts information from the visual
input, the precise modeling of the early facilitatory effect of ortho-

graphic familiarity, which is believed to emerge at initial stages of
fixation programming (White, 2008), is beyond the scope of the
present study.

Inflected Words

We begin our evaluation of the potential of naive discriminative
learning for the comprehension of morphologically complex words
with a study of present- and past-tense inflection in English. Although
the semantics of inflection tend to be straightforwardly regular, the
formal expression of tense can be quite irregular, as is the case for the
irregular verbs of English. Of specific interest to us is whether naive
discriminative learning is sufficiently powerful to model the effects of
irregularity and regularity in visual comprehension of English verbs.

From the CELEX lexical database Baayen et al. (1995), we se-
lected all verbs listed as monomorphemic. For these verbs, we took
the (uninflected) present- and past-tense plural forms (walk, walked,
come, came) and extracted (where available) the corresponding lexi-
cal decision latencies from the ELP (Balota et al., 2004), together with
their frequency in the HAL corpus (Lund & Burgess, 1996), their
orthographic length, and their number of neighbors at Hamming
distance 1 (the N-count measure). This resulted in a data set with
1,326 different verb lemmas, of which 1,209 were regular and 131
were irregular verbs. The total number of different verbal word forms
was 2,314. Response latencies were inverse transformed (	1,000/

−0.04 −0.02 0.00 0.02 0.04

−
0.

5
0.

0
0.

5
1.

0

observed coefficients

ex
pe

ct
ed

 c
oe

ffi
ci

en
ts

* Bigram Frequency

* Frequency

* Family Size

* Length
                                  Noun−to−Verb Ratio

*

* Inflectional Entropy

               Synsets*

* Prepositional RE

* N−count

r = 0.87, p < 0.0001

Figure 8. Observed and expected coefficients for the linear models for 1,295 monomorphemic English nouns.

Table 13
Coefficients for the Model Fitted to the Simulated Response
Latencies of Monomorphemic English Nouns

Variable Estimate
Standard

error t p

Intercept 0.217 0.493 0.441 .6594
Mean bigram frequency 1.113 0.081 13.714 .0000
Written frequency 	0.540 0.028 	19.246 .0000
Family size 	0.404 0.057 	7.108 .0000
Length 	0.117 0.080 	1.465 .1433
Noun verb ratio 	0.114 0.019 	6.073 .0000
Inflectional entropy 	0.625 0.095 	6.606 .0000
Complex synset count 	0.104 0.034 	3.033 .0025
Prepositional relative entropy 0.166 0.027 6.194 .0000
N-count 0.043 0.009 4.970 .0000

Note. Complex synset count � number morphologically complex syn-
onyms; N-count � neighborhood density.
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RT), and HAL frequency was log-transformed (base e). For each verb,
its log-transformed morphological family size and its inflectional
entropy were included as additional covariates, together with two
factors specifying whether a verb was regular or irregular (regularity)
and whether a verb form was in the past tense (past tense).

A mixed-effects model fitted to the empirical lexical decision
latencies with random intercepts for verb lemma (as a given verb
contributes a present- and a past-tense form) revealed the expected
negative slopes for frequency, family size, and inflectional entropy
and the expected positive slope for length. The N-count measure
did not reach significance. Regularity and tense interacted as
shown in the upper left panel of Figure 9, with a difference in the
group means for past- and present-tense forms for irregulars but
not for regulars (see Table 14).

The modeling of tense inflection raises three implementational
issues. A first issue is how to represent tense, as an equipollent
opposition (with a past-tense semantic representation as well as a
present-tense representation) or as a single graded representation
representing the amount of evidence supporting the (marked)
past-tense interpretation. We opted for the second, more parsimo-
nious solution. The binary distinction between present and past
tense was modeled with a single semantic representation capturing
the amount of evidence supporting a past-tense interpretation. We
rescaled the activation apast of the past-tense meaning for a given

verb into a probability. When defining apast to denote the vector of
activations of the past-tense meaning across all inflected words,
the rescaled activation of a paste-tense meaning is given by

a�past �
apast � min�apast�

max�apast� � min�apast�
. (22)
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Figure 9. Observed (upper left) and simulated (lower left) interaction of Regularity 
 Past Tense, and a scatter
plot for the observed and expected coefficients (upper right) for the models fitted to the observed and simulated
latencies for English present- and past-tense verbs. RT � reaction time.

Table 14
Coefficients for the Mixed-Effects Model Fitted to the Observed
Response Latencies for Inflected Verbs

Variable Estimate Lower Upper p

Intercept 	1.1828 	1.2491 	1.1297 .0001
Frequency 	0.0433 	0.0474 	0.0414 .0001
Tense � past 0.1160 0.0789 0.1433 .0001
Family size 	0.0306 	0.0358 	0.0189 .0001
N-count 	0.0009 	0.0025 0.0008 .3662
Length 0.0169 0.0127 0.0238 .0001
Inflectional entropy 	0.0305 	0.0474 	0.0123 .0006
Regularity � regular 0.0314 0.0071 0.0558 .0104
Tense � past: Regularity �

regular 	0.1136 	0.1498 	0.0802 .0001

Note. Lower, upper � 95% highest posterior density credible intervals
based on 10,000 samples from the posterior distribution of the parameters;
p � Markov chain Monte Carlo p value; N-count � neighborhood density.
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For present-tense verbs, we take the complementary probability:

ptense � �a�past for past-tense verb forms
1 � a�past for present-tense verb forms.

(23)

A second issue concerns what semantic information is made
available to the model during training. Many verb forms are
ambiguous with respect to tense: come is either a finite present-
tense form (I come) or the infinitive (I want to come), walked is
either a past-tense form (I walked) or a past participle (I have
walked), and hit can be either a present- or past-tense finite form
(I hit) or a past participle (I have hit). The interpretation of these
forms is context dependent. The constructions extracted from the
BNC providing information about verb inflections to our model
contained a verb preceded by a pronoun, an auxiliary, or a pronoun
and an auxiliary. A verb was coded as expressing past-tense
semantics if and only if it appeared in the context of an immedi-
ately preceding auxiliary that unambiguously signals past-tense
semantics (e.g., had, was, were). As a consequence, the model
critically depends on contextual cues for learning the past-tense
semantics of regular verbs with the -ed suffix. Irregular past-tense
forms, by contrast, were associated with past-tense meaning inde-
pendently of context (e.g., had, was, were, came, went, saw).

A third issue concerns how to weight the contributions of the
semantic representations for the verb and past tense. As the se-
mantics of the verb itself is, in general, much richer than that of the
more abstract semantics of present or past, we expect that a better
fit is obtained when the weight for the past-tense meaning is
smaller than that of the verb meaning. We therefore introduce a
weight 0 � wtense � 1.

As for the monomorphemic words, the simulated RT was defined
as the log-transform of the reciprocal of the probability of identifica-
tion of a word in the set of its most highly activated competitors:

Pid �
wtense ptense � averb

wtense ptense � averb � wc�i�1
n ai

(24)

simulated RT � log�1/Pid�,

where wc is a weight for the summed activations of the n strongest
competitors. As for the monomorphemic words, n was fixed at 20. A
good fit was obtained for wtense � 0.15 and wc � 0.1. Finally, the
effect of multiple fixations is brought into the model as before,

simulated RT � log� 1

Pid
� �I �l�5�� , (25)

with � � 0.2.
For two words (bade, whiz), the simulated activation was less

than zero. These verbs were removed from the data set. The
correlation between the observed and simulated response latencies
was r�.47, t(2312)�25.39, p�.0001. Table 15 lists the co-
efficients of the mixed-effects model fitted to the simulated
latencies. The correlation between the coefficients of the
regression models for the observed and expected latencies
was r � .9, t(6) � 5.15, p � .0021. This correlation is illustrated
in the right panel of Figure 9.

Frequency and family size were significantly facilitatory for
both observed and simulated response latencies. The N-count

measure was not predictive in the two mixed-effects models.
Longer words elicited significantly longer response latencies,
which the model attributes to additional fixations being required
for longer words.

Whereas inflectional entropy was facilitatory for the observed
latencies, it emerged as inhibitory for the simulated latencies,
indicating that the model fails to learn the inflectional meanings
associated with verbal meanings properly. Again, there is a good
reason for this. The model was trained on data that specified past
tense wherever possible but did not provide information on the
aspectual meanings such as the present/past perfect (she has/had
walked) or the continuous (she is/was walking). Hence, the empir-
ical inflectional entropy (based on CELEX) does not match the
model’s learning experience. For the simple nouns studied above,
the empirical inflectional entropies provided a much better char-
acterization of the model’s learning opportunities: Number speci-
fication was available to the model through disambiguating pro-
nouns and determiners in the context. As a consequence,
inflectional entropy could emerge with the correct sign in the
simulation of the simple nouns.

The treatment coefficients for tense, regularity, and their inter-
action all agreed in sign and reached significance for the observed
and the simulated latencies. The lower panel of Figure 9 visualizes
the interaction of Regularity 
 Past Tense in the simulated laten-
cies. The interaction in the simulated RTs mirrors well the inter-
action characterizing the observed latencies, with a large differ-
ence between present- and past-tense irregular forms and similar
latencies for regular present- and past-tense forms.

The interaction of Regularity 
 Tense is difficult to interpret in
current models assuming parsing of regulars and storage for irreg-
ulars. Under such accounts, regular past-tense forms, requiring
some decompositional processing, should elicit longer latencies
than the corresponding present-tense forms, contrary to fact. Fur-
thermore, the processing advantage for irregular present-tense
forms compared to regular present-tense forms is not expected. It
is crucial that the interaction of Regularity 
 Tense occurs in a
model in which frequency and other variables are included as
covariates.

Our model suggests a very different interpretation. Recall that
during training, the information available to the model for discrim-

Table 15
Coefficients for the Mixed-Effects Model Fitted to the Simulated
Response Latencies for Inflected Verbs

Variable Estimate Lower Upper p

Intercept 1.4467 1.5663 1.8048 .0001
Frequency 	0.0557 	0.0916 	0.0795 .0001
Tense � past 0.1939 0.0704 0.1991 .0001
Family size 	0.1352 	0.1123 	0.0792 .0001
N-count 0.0003 	0.0018 0.0048 .3580
Length 	0.0041 	0.0223 	0.0008 .0410
Inflectional entropy 0.0660 0.0249 0.0955 .0001
Regularity � regular 0.0397 	0.0274 0.0700 .3884
Tense � past: Regularity �

regular 	0.1816 	0.2082 	0.0695 .0004

Note. Lower, upper � 95% highest posterior density credible intervals
based on 10,000 samples from the posterior distribution of the parameters;
p � Markov chain Monte Carlo p value; N-count � neighborhood density.
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inating between present and past meanings is very different for
regulars and irregulars. For irregular past-tense forms, the past-
tense interpretation is made directly available during learning,
independently of the context. For regulars, by contrast, the past-
tense reading is available for learning only in the presence of
past-tense auxiliaries.

The observed lexical decision latencies were elicited for words
presented in isolation, without context, and our model likewise
simulates reaction times for isolated word reading. Because the
present/past distinction is not context dependent for irregulars, a
large difference emerges for the means of the simulated latencies
of irregulars. By contrast, the low cue validity of -ed as a marker
for the past tense causes regular past-tense forms to be highly
context dependent for their tense interpretation. Regular past-tense
forms do become associated with the past-tense meaning to a
greater extent than present-tense forms, but the association is
weaker than for irregular verbs. With only a small weight for the
tense meaning (w1 � 0.14), the group means for present- and
past-tense regulars collapse, potentially reflecting a list effect in
the ELP, in which many different words were presented and in
which tense was not a prominent feature.

In summary, this simulation study shows that a reasonable fit to
the data can be obtained with the basic engine introduced for the
simulation of simple nouns, combined with four free parameters:
the weight for the tense meaning, two parameters defining the
weight and size of the competitor set, and a fixation penalty. The
model faithfully reflects the interaction of Regularity 
 Tense, an
interaction that challenges classical, purely representation-based
theories of morphological processing.

We suspect that the pattern of results observed for lexical decision
will change when these forms are read in sentential context. In
sentential context, information is available for disambiguation of the
ambiguous -ed suffix. As a consequence, we expect that in context,
the past-tense meaning will be activated more strongly for regular
verbs. It is important to note, however, that the naive discriminative
reader models only the initial stage of visual comprehension, in which
orthographic information contacts meanings. Subsequent processes of
context-driven disambiguation and interpretation are not accounted
for. Therefore, two assumptions are crucial to the present explanation.
First, if our explanation is on the right track, the lexical decision task
provides a window on this context-free initial activation of lexical
meanings from orthographic forms. Second, it is assumed that dis-
criminative learning of the mapping from form to meaning is in-
formed only by meanings that are unambiguous and that do not need
higher level cognitive processes to resolve their ambiguity. In other
words, our hypothesis is that the initial mapping from form to mean-
ing is learned not on fully specified meanings that are the outcome of
complex and late processes of sentential interpretation but rather on
the underspecified meanings that form the input to those processes.

Derived Words

Whereas the forms of inflected words typically tend to mark
aspects of meaning that are relevant for syntactic coreferential
processing (e.g., number and person agreement marking), derived
words tend to express meanings that differ more substantially from
those of their base words. Although for many words, the semantics
of the base are transparently visible in the semantics of the derived
word (e.g., true in truth), some derived words can have meanings

for which this is no longer true (e.g., busy in business). Derivation
is therefore described as involving word formation, in the sense
that it allows for the creation of labels for new concepts that have
gained currency in the speech community.

Inflectional morphology tends to be quite regular (the irregular
past tenses of English being exceptional), but derivational pro-
cesses are characterized by degrees of productivity. Some suffixes
are hardly ever used for the creation of new words (e.g., English
-th in warmth), and others give rise to large numbers of new
formations (e.g., -ness in English). The extent to which a deriva-
tional affix is available for the formation of new words is known
as its degree of productivity (see, e.g., Baayen, 2008; Baayen &
Renouf, 1996; Bauer, 2001).

In what follows, we first consider which lexical distributional
properties predict the processing of derived words, following
Baayen et al. (2007), and examine whether naive discriminative
learning replicates the importance of these properties. We then
consider whether the model also predicts that more productive
affixes require longer processing latencies, as observed by Plag
and Baayen (2009). Next, we consider whether it is necessary to
postulate a special early morphographic parsing process, as
claimed by Rastle et al. (2004). Finally, we examine whether the
notion of the morpheme, a theoretical construct that many current
theories of morphology consider to be obsolete (S. Anderson,
1992; Aronoff, 1994; Beard, 1977), can be dispensed with in the
discriminative learning framework by considering the processing
of phonaesthemes.

Derived word processing. We selected 3,003 derived words
(569 prefixed words and 2,434 suffixed words) with 81 different
affixes and 1,891 different base words for analysis.

We considered the frequency and length of the derived word, the
frequency of its base, the family size of its base, the family size of
the suffix, and the frequency of the letter bigram spanning the
transition from base into suffix or prefix into base (the boundary
bigram frequency) as predictors for the observed and simulated
lexical decision latencies. Effects of the frequency and family size
of the base have often been interpreted as evidence of the ortho-
graphic input being parsed into stem and affix representations (see,
e.g., Bertram, Schreuder, & Baayen, 2000; Kuperman, Bertram, &
Baayen, 2008; Taft & Forster, 1976). Whole-word frequency ef-
fects, by contrast, would indicate noncompositional, holistic pro-
cessing. Furthermore, it has been argued that morphological ef-
fects are due to complex words typically having low-frequency
boundary bigrams (Seidenberg, 1987; Seidenberg & McClelland,
1989; for discussion and counterevidence, see Rapp, 1992). Given
these traditional diagnostic measures for morphological process-
ing, the question we need to address is whether the present dis-
criminative learning framework can properly reflect the impor-
tance of these predictors for lexical processing.

As these predictors are highly collinear with a condition number
� � 33.6 (Belsley, Kuh, & Welsch, 1980), we orthogonalized
them as follows. Base frequency was residualized on word fre-
quency. The residualized base frequency strongly correlated with
the original count (r � .96). Base family size was residualized on
word frequency (r � .98). Suffix family size was residualized on
(residualized) family size and word frequency (r � .99). Finally,
the boundary bigram frequency was residualized on all other
predictors (r � 0.99). The condition number for the resulting set
of predictors was substantially reduced to � � 12.9. At the same
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time, the high correlations of the new variables with their originals
ensure that the new variables remain well interpretable.

We fitted a mixed-effects regression model to the observed
latencies with random intercepts for base and affix. The estimated
coefficients are listed in Table 16. Response latencies increased
with word length. Words with a higher boundary bigram frequency
elicited longer latencies as well. More frequent words, words with
more frequent base words, and words with large base families or
suffix families elicited shorter response latencies.

The simulated response latencies were defined along the same
lines as for inflected words:

Pid �
waffix aaffix � abase

waffix aaffix � abase � wc�i�1
n ai

(26)

simulated RT � log� 1

Pid
� �I �l�5�� . (27)

The number of competitors n was fixed at 20, as in the preceding
simulations. A good fit was obtained for affix weight waffix � 0.25,
for competitor weight wc � 0.1, and for � � 0.2. The corre-
lation between the observed and simulated latencies was r � .25,
t�3001� � 13.86, p � .0001. We fitted the same mixed-effects
model to the simulated latencies. The coefficients of this model are
reported in Table 17. Figure 10 visualizes the correlation between
the coefficients of the model fitted to the observed and expected
latencies.

Although the coefficients for the simulated reaction times have
the right sign and reach significance, the correlation between the
two sets of coefficients fails to reach significance, indicating that
there is room for improvement. Most striking is the imbalance of
word frequency and base frequency. For the observed latencies,
the coefficient for word frequency is larger than that for base
frequency. For the simulated latencies, the reverse holds. This is
due to the model being a fully decompositional model that does not
do justice to the loss of transparency of many derived words (e.g.,
the meaning of business, “enterprise,” is not straightforwardly
related to the meaning of its base, busy). We expect more balanced
results once opaque derived words are assigned separate meaning
representations, distinct from those of their base words.

Whereas facilitatory effects of base frequency and family size
are traditionally understood as the result of the input being parsed
into its constituents, the present simulation shows that these facili-

tatory effects can arise without any explicit parsing process being
involved. Furthermore, a whole-word frequency effect is present in
the simulation in the absence of any whole-word representations.

As expected, words with higher boundary bigram frequencies
emerge with both greater observed and greater simulated latencies.
Conversely, processing is faster for lower frequency boundary
bigrams, or “bigram troughs” (Seidenberg, 1987). This effect
coexists peacefully with stem frequency and constituent family
size effects, indicating that it is one of several processing diagnos-
tics of morphological complexity. We note here that bigram trough
effects are open to very different interpretations. The original
hypothesis of Seidenberg (1987) was that low-level processing of
letter pairs is at issue. By contrast, Hay (2003) argued that affixes
with deeper bigram troughs are easier to parse out, affording
greater affix productivity.

The naive discriminative reader predicts that bigram troughs
also should give rise to shorter response latencies but not because

Table 17
Coefficients for the Mixed-Effects Model Fitted to the Simulated
Response Latencies for Derived Words

Variable Estimate Lower Upper p

Intercept 1.0359 1.0267 1.0598 .0001
Length 0.0041 0.0021 0.0055 .0001
Word frequency 	0.0110 	0.0144 	0.0118 .0001
Base frequency 	0.0172 	0.0192 	0.0164 .0001
Base family size 	0.0064 	0.0088 	0.0024 .0004
Affix family size 	0.0081 	0.0134 	0.0014 .0146
Boundary bigram frequency 0.0045 0.0046 0.0073 .0001

Note. Lower, upper � 95% highest posterior density credible intervals
based on 10,000 samples from the posterior distribution of the parameters;
p � Markov chain Monte Carlo p value.

Table 16
Coefficients for the Mixed-Effects Model Fitted to the Observed
Response Latencies for Derived Words

Variable Estimate Lower Upper p

Intercept 	1.2956 	1.3282 	1.2541 .0001
Length 0.0277 0.0230 0.0310 .0001
Word frequency 	0.0664 	0.0701 	0.0636 .0001
Base frequency 	0.0071 	0.0107 	0.0037 .0001
Base family size 	0.0119 	0.0182 	0.0039 .0040
Affix family size 	0.0151 	0.0272 	0.0050 .0066
Boundary bigram frequency 0.0068 0.0047 0.0112 .0001

Note. Lower, upper � 95% highest posterior density credible intervals
based on 10,000 samples from the posterior distribution of the parameters;
p � Markov chain Monte Carlo p value.

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04

−
0.

02
0

−
0.

01
0

0.
00

0
0.

00
5

0.
01

0

observed coefficients

ex
pe

ct
ed

 c
oe

ffi
ci

en
ts

Length

Word Frequency

Base Frequency

Base Family Size

Affix Family Size

Bigram Trough Frequency

r = 0.61; p = 0.2

Figure 10. Coefficients for the observed and simulated response latencies
for 3,003 English derived words.
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morphological decomposition would proceed more effectively.
The reason bigram troughs provide facilitation in our model is very
different, although straightforward. High-frequency boundary bi-
grams are typically used word internally across many words and
therefore have a low cue validity for the meanings of these words.
Conversely, low-frequency boundary bigrams are much more typ-
ical for specific base � affix combinations and hence are better
discriminative cues, affording enhanced activation of meanings
and, hence, allowing faster processing.

Affix productivity. As mentioned above, derivational affixes
differ in their degree of productivity. Affixal productivity can be
gauged by considering the number of different word types with a
given affix. In the present data set, unproductive -th is represented
by 16 word types and productive -ness is represented by 177 word
types. Although the number of types in which an affix occurs,
referred to above as affix family size, provides a decent first
approximation of affixal productivity, a more sensitive measure
considers the likelihood of encountering new, previously unseen
formations. The measure we examine here ( ) is the Good–Turing
estimate of the probability mass of words present in the population
but absent in a (corpus) sample (Baayen, 1992; Good, 1953):

�
V1

N
, (28)

where V1 denotes the number of types with the affix appearing
once only in the sample (corpus) and N the total number of tokens
of all words with the affix in the sample. An intuitive understand-
ing of this measure can be obtained by considering a vase with
marbles of different colors, with different colors occurring with
varying frequencies (e.g., red 6, yellow 1, blue 15, purple 1,
magenta 2, green 3, white 7, black 2, brown 3). When a marble is
drawn from the vase without replacement, the likelihood that its
color occurs once only is equal to the ratio of the number of colors
with frequency 1 (V1) to the total number of marbles (N), for the
present example leading to the probability (2/40). Once sampled
(without replacement), the color uniquely represented by the mar-
ble drawn from the vase will never be sampled again. By symme-
try, the probability that the last marble sampled has a color that has
not been seen previously equals V1/N. In other words, is the
probability that, having seen N	1 tokens, an unseen type will
be sampled at “sampling time” N. (For formal proofs, see,
e.g., Baayen, 2001.) This productivity measure outperforms
the affix family size in that it correctly predicts that an affix
instantiated in a relatively small number of types can nev-
ertheless be productive (for experimental evidence, see
Baayen, 1994).

Recently, Plag and Baayen (2009) observed for a selection of
English derivational suffixes that the by-affix processing cost,
estimated by averaging response latencies across all words with a
given affix, entered into a positive correlation with degree of
productivity . It is only for the most productive suffixes that this
effect was slightly attenuated. The upper panel of Figure 11
replicates the main trend for a larger selection of affixes, including
not only suffixes but also prefixes. As productivity increases,
processing latencies increase, r � .34, t(73) � 3.08, p � .0029.
The lower panel shows that the same pattern is present in the
simulated latencies, r � .37, t(73) � 3.45, p � .0009.

The traditional psycholinguistic interpretation of the mea-
sure is that (a) words with many low-frequency formations
(such as formations that occur once only, contributing to V1) are
unlikely to have whole-word representations and, hence, de-
pend on rule-based parsing and (b) that the more high-
frequency, lexicalized formations there are (contributing to a
large N), the more rule-based processing will be superfluous. In
other words, productive affixes have relatively few higher fre-
quency words and many lower frequency forms, which provides
a bias against whole-word based access and a bias in favor of
decompositional processing (see, e.g., Baayen, 1992). Because
our discriminative learning model does not incorporate whole-
word representations for derived words and yet faithfully re-
produces the positive correlation of affix productivity and av-
erage processing latency, a different explanation is required.

What Figure 11 shows is that less productive suffixes, which
tend to be suffixes with relatively fewer but higher frequency
formations, guarantee shorter latencies, on average. Their higher
frequency of occurrence ensures better by-item learning. Further-
more, because a less productive suffix is more constrained in its
morphological microcontext—it co-occurs with fewer stems—it
should become a relatively good cue for these few stems. Con-
versely, low token frequencies and many types lead to reduced
item-specific learning with, as a flip side, better generalization to
previously unseen words. This line of reasoning predicts that for a
productive suffix, such as –ness, the activation of the suffix in new
words should be greater than the activation of an unproductive
suffix, such as -th.

To test this prediction, we made a list of formations that were
new for the model, by adding these suffixes to the 322 mono-
morphemic adjectives in the training set and subsequently re-
moving all forms to which the model had been exposed during
training. For -ness (as in goodness; � .0047), there were 208
unseen derived words. There were 321 unseen formations for
-th ( � .0001). For each of these new words, we then calcu-
lated the predicted activation of the suffix meaning. A Wil-
coxon rank sum test indicated that, as expected, the average
activation of the suffix was greater (W � 38,171, p � .0053) for
productive -ness (0.382) than for unproductive -th (0.273). The model
therefore predicts reduced processing costs for neologisms with
productive suffixes. In other words, the processing advantage that
less productive suffixes enjoy over more productive suffixes for
existing words is reversed into a processing disadvantage for
unseen words.

It is interesting that, even though -th is typically described as
no longer productive in English (see, e.g., Bauer, 2001), new
words occasionally emerge (Baayen, 2009). Among the novel
words predicted by the model to have a higher activation for -th,
we find strongth, slowth, firmth, and oldth, all attested on Urban
Dictionary (http://www.urbandictionary.com). Although these
new words have the flavor of being quite unusual, it is not
difficult to deduce their meanings (as in “Caution: installation
of too many Firefox add-ons may induce slowth”; Urban Dic-
tionary s.v. slowth). This fits well with the relatively high
activation levels predicted for -th: Even though smaller on
average than those for -ness, they tend to be larger than zero. In
fact, there is considerable overlap in the distributions of acti-
vations for the two suffixes. The model predicts that even for
new words, the meaning of the unproductive suffix is activated;
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hence, neologisms such as slowth are correctly predicted to be
comprehensible, even though most speakers would not sponta-
neously produce such words themselves. We conclude that
naive discriminative learning succeeds in capturing important
aspects of morphological productivity, without having to posit
separate representations for complex words or separate mor-
phological rules associated with some kind of probability that
would specify their likelihood of application.

Pseudo-Derived Words

Thus far, we have shown that morphological effects arise in our
model in the absence of any specifically morphological processes
or representations. However, a well-known and widely discussed
phenomenon in the recent psycholinguistic literature is a pattern of
morphological priming effects emerging in masked priming ex-
periments that would support the existence of an early morpho-
orthographic parsing process. In what follows, we focus on the
study of Rastle et al. (2004), who observed that the magnitude of
the priming effect for target words preceded by a derived prime
was comparable irrespective of whether the prime was a semanti-
cally related morphological relative (e.g., dealer–deal) or whether
the prime–target relationship was semantically opaque (e.g.,
corner–corn). The priming effects obtained for these conditions

were significantly larger than those obtained in a form condition in
which no suffix is present (brothel–broth). This evidence has been
interpreted as indicating that complex words are decomposed at an
early morpho-orthographic level of processing and that this de-
composition process is triggered by apparent morphological struc-
ture. The hypothesis of an early purely form-driven morpho-
orthographic decomposition process is not uncontested and may
depend on the kind of filler materials in the experimental list
(Feldman, O’Connor, & Moscoso del Prado Martı́n, 2009). Our
model does not comprise a morpho-orthographic processing mod-
ule, so it is important to clarify whether or not the data of Rastle
et al. (2004) can nevertheless be adequately simulated.

A first question that we need to address for modeling the data of
Rastle et al. (2004) is how to represent the meanings of the
pseudo-derived items in their study: words such as early, fleeting,
fruitless, archer, and cryptic (examples taken from the Appendix
of Rastle et al., 2004). Linguistically, these pseudo-derived words
are a very heterogeneous set. The stem of early is related histor-
ically to modern English ere, a link not many native speakers will
be aware of, but the suffix -ly is still functional as an adverbial
marker.

The adjective fruitless is opaque when considered in isolation:
The meaning “in vain,” “unprofitable” seems unrelated to the
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Figure 11. Log affix productivity ( ) as predictor of mean affix latency for observed data (left panel) and
simulated data (right panel). Observed latencies are on the 	1,000/RT scale. Regression lines are nonparametric
LOWESS regression smoothers. RT � reaction time.
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meaning of the base, fruit. Yet there are metaphors in English that
build on this meaning, as found in expressions such as the fruits of
his labors, and fruitless labors are then “labors that did not bear
fruit.” Moreover, one finds expressions such as a fruitless tree, in
which the literal meaning, “without fruit,” is appropriate. For this
example, it is debatable whether the meaning of the base is totally
irrelevant for the meaning of the derived word. What is clear,
however, is that the privative meaning of -less, “without fruit” or
“without success,” is still present in the complex word.

The etymological origin of archer, “someone who wields a
bow,” is Latin arcus (bow, arc). It is similar in structure to a
denominal formation such as trucker, “someone who drives
a truck.” Again, the suffix is transparently present in the complex
word, marking it as an agent noun, even if the base is no longer
synchronically that clearly visible.

For the adjective cryptic, Rastle et al. (2004) must have had in
mind the freestanding base word crypt, “a vault wholly or partly
underground.” And indeed, the meaning of the adjective cryptic,
“hidden, secret, incomprehensible,” is unrelated to this meaning of
the base. Leaving aside that the meaning of crypt goes back to a
proto-Indo-European root meaning, “to hide,” and that English
does make use of a transparent bound root crypt- (as in cryptog-
raphy), it is clear that the suffix -ic is contributing to the meaning
of the adjective just as it does in rhythm-ic or Semit-ic. For fleeting,
the suffix -ing is contributing to the adjectival reading “transient,”
just as it does in words such as daring or humbling.

It should be noted that functional suffixes in words with bases
that do not contribute to the meaning of the derived word are
sometimes active in the grammar. In Dutch, simple words take a
prefix for their past participle (zitten–gezeten, “sit”; wandelen–
gewandeld, “walk”). Complex verbs do not take this prefix
(behandelen–behandeld, “treat”). Although Dutch does not have a
verb ginnen, the derived word beginnen (“begin”) behaves as a
complex word by not taking the prefix for its past participle, which
is begonnen and not gebegonnen.

Although these examples show that the degree of opacity of the
pseudo-complex words is debatable for at least a subset of the
items, we have chosen to assign these pseudo-complex words their
own meanings, rather than the meanings of their base words.
However, where a suffix is synchronically active, as in the exam-
ples discussed above, the word is also linked to the suffix meaning.
For words such as ample and trolley, in which there is no syn-
chronic suffix, no suffix meaning was assigned. This coding
scheme (see Table 18 for an overview) is probably conservative, as
the example of fruitless shows.

For both prime and target, we estimate probabilities analogous
to (25),

Pidword �
waffix aaffix � aword

waffix aaffix � aword � �i�1
n ai

, (29)

where waffix is a weight for the affixal meanings and where n
represents the number of strongest competitors taken into account.

To model the masked priming results of Rastle et al. (2004), we
again make use of the compound cue theory of Ratcliff and
McKoon (1988). We allow prime and target to have different
weights, by defining the compound cue strength as

S� � PidP
w PidT

1	w,

Simulated RT � log�1/S��, (30)

with prime weight w � 0.05. The correlation of the simulated
and observed latencies was .51. It is crucial that the magnitude of
the priming effects matched those from the empirical study. The
transparent and pseudo-derived words had empirical priming ef-
fects of 22 and 24 ms that were both significant and did not differ
significantly between them. In the model, similarly, priming ef-
fects of 0.064 and 0.071 were obtained that were both highly
significant (t � 13.92 and 15.59, respectively) and that did not
differ (for both treatment coefficients, the standard error was
0.0046).

It is noteworthy that a morpho-orthographic effect is replicated
in a model without a morpho-orthographic parsing component. If
our model is on the right track, the reason that the transparent and
opaque conditions give rise to a similar priming effect is not that
a semantically blind orthographic parser separates affix from stem,
allowing the parsed-out stem to prime the target. Instead, due to
discriminative learning, the orthographic representations for the
suffix (unigrams, bigrams) have become associated with the suffix
meaning. Crucially, these associations can emerge because for the
majority of opaque items, the suffix is fully functional in the
meaning of the complex word.

Is independent evidence available that morphological units can
be fully functional even when there is no obvious semantic con-
tribution from the base? To answer this question, we consider the
processing of phonaesthemes.

Phonaesthemes. Phonaesthemes are frequently recurring
sound–meaning pairings in the absence of a stem. Classic exam-
ples from Bloomfield (1933) are word initial gl in glow, glare,
gloom, gleam, glimmer, and glint. Bergen (2004) observed that
38.7% of the types and 59.8% of all tokens in the Brown corpus
beginning with gl have dictionary definitions that refer to light or
vision. For sn, 28% of the word types and 19% of the word tokens
have meaning related to “nose” or “mouth” (e.g., sniff, snore,
snort, snot, snout, sneeze).

Bergen studied the processing of phonaesthemes using a
primed visual lexical decision task with a prime duration of 150
ms and a 300-ms interval between the presentation of prime and
target. Stimuli fell into five categories. The set of phonaes-
themes shared a phonological onset and a meaning well sup-

Table 18
Assignment of Meanings to Selected Words in the Opaque,
Transparent, and Form Conditions in the Study of Rastle
et al. (2004)

Word Type
Lexical
meaning

Suffix
meaning

archer opaque archer er
cryptic opaque cryptic ic
fruitless opaque fruitless less
trolley opaque trolley
employer transparent employ er
alcoholic transparent alcohol ic
cloudless transparent cloud less
arsenal form arsenal
brothel form brothel
candidacy form candidacy
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ported across a large number of word types and tokens (e.g.,
glitter, glow). Then, in the form condition words shared an
onset but no meaning (druid, drip). In the meaning condition
they shared meaning (cord, rope). The set of pseudo-
phonaesthemes comprised words sharing onset and meaning,
but in this case the potential phonaestheme was not well sup-
ported distributionally (crony, crook). Finally, the baseline con-
dition included words unrelated in form and meaning (frill,
cook). Stimuli were matched for frequency, number of letters,
number of phonemes, and number of syllables. The words in the
phonaestheme condition elicited significantly shorter latencies
than did the words in any of the other four conditions, indicat-
ing that distributionally well-supported phonaesthemes enjoy a
processing advantage of nearly 60 ms compared to words in the
baseline condition.

Using the lists of stimuli listed in Appendix B of Bergen
(2004), we calculated the simulated response latencies for his
materials. The meanings of the words were coded as shown in
Table 19, with phonaesthemes and pseudo-phonaesthemes re-
ceiving a second meaning (in addition to the meaning of the
whole word) represented simply by the phonaestheme. Words
in the meaning condition were also assigned a second meaning,
which varied from pair to pair. Probabilities of identification
were defined as

pword �
wm ashared meaning � aword

wm ashared meaning � aword � �i�1
n ai

, (31)

with wm the weight for the shared meaning (the equivalent of the
weight for affix meanings for derived words), and n the number
of highest activated competitors taken into consideration. A
good fit requires approximately the parameter values wm �
0.01 and n � 40. As for the pseudo-derived words, we made use
of the compound cue theory, setting the prime weight to 0.2 (cf.
Equation 30).

As Bergen (2004) did not provide item means, we calculated
the mean simulated latency for each condition. As illustrated in
Figure 12, the model captures the main trend in the observed
group means: r � .97, t(3) � 6.95, p � .0061. An analysis of
covariance of the simulated latencies with word frequency as
covariate indicated that the group mean for the phonaesthemes
contrasted significantly with the joint group mean of the other
four groups, ̂ � 0.020, t�48� � � 2.339, p � .024.
With only 10 observations for each condition, the model was
not accurate enough to support the significance of the contrasts

of the phonaesthemes with each of the other four conditions
separately.

This simulation study suggests, albeit tentatively, that prim-
ing effects for phonaesthemes similar to those found for regular
morphemes can emerge within the framework of naive discrim-
inative learning. Morpheme-like effects can be present without
an input string requiring a parse into a sequence of morphemes
that jointly span the input. The model therefore dovetails well
with theories in linguistic morphology that have challenged the
explanatory value of the theoretical construct of the morpheme
(see, e.g., S. Anderson, 1992; Aronoff, 1994; Blevins, 2003,
2006; Booij, 2010; Matthews, 1974; Stump, 2001).

Although we can label particular forms such as gl as pho-
naesthemes, setting them apart from “accidental” series for
which aspect of form and meaning would coincide supposedly
by chance, the phenomenon itself is in all likelihood a gradual
one. We suspect that it is only for the strongest and semantically
most consistent series that morpheme-like effects are detectable
in online behavioral experiments. Yet a discriminative learning
approach predicts that even small local consistencies in the
fractionated chaos of local form–meaning correspondences will
be reflected in the weights and that they will codetermine
lexical processing, however minute these contributions may be.
Even in this chaos there seems to be some order, as Shillcock,
Kirby, McDonald, and Brew (2001) observed that in English,
for the most frequent monosyllabic words, there is a small but
significant correlation between the phonological distance and
the semantic distance between each pair of words. Words with
more similar meanings tend to have more similar forms. Mor-
phology, as the study of the relation between form and meaning
in words, can begin to account for these kinds of phenomena
only by freeing itself from the chains of the morpheme.

In the next section, we consider compounding, the most pro-
ductive word formation process in English and the one that comes
closest to syntactic phrase formation.

Compounds

Studies on compound processing (e.g., Baayen, 2010; De Jong,
Feldman, Schreuder, Pastizzo, & Baayen, 2002; Juhasz, Starr,
Inhoff, & Placke, 2003; Kuperman et al., 2008, 2009; Pollatsek,
Hyönä, & Bertram, 2000) have documented a wide range of
variables explaining processing latencies, including compound
frequency, word length, and both the family size and frequency of

Table 19
Coding of the Meanings of the Items in the Simulation of the Primed Lexical Decision Experiment of Bergen (2004)

Condition

Prime Target

Input Meaning 1 Meaning 2 Input Meaning 1 Meaning 2

Phonaestheme glimmer gl glimmer gleam gl gleam
Baseline dial dial ugly ugly
Meaning collar x1 collar button x1 button
Form druid druid drip drip
Pseudo-phonaestheme bleach bl bleach blank bl blank

Note. Each word pair in the meaning condition was assigned an arbitrary and unique semantic label.
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the head and modifier constituents. In what follows, we consider
921 compounds for which lexical decision latencies are available
in the ELP.

Following Baayen (2010), we analyzed the response latencies
with a generalized additive model (Wood, 2006), with as well-
established predictors the positional family size of the modifier
(the number of compounds sharing the left constituent as modi-
fier), the frequency of the modifier, the positional family size of
the head, the length of the compound, and the frequency of the
compound. A factor specifying whether the head of the compound
(e.g., worm in silkworm) is also used as a modifier in other
compounds (e.g., worm in wormwood) was included, as well as a
factor specifying whether a compound is part of the strongly
connected component of the compound graph. The strongly con-
nected component of a directed graph is that part of the graph in
which any node can be reached from any other node by following
the directed links between the nodes. For the present data, being
part of the strongly connected component of the directed com-
pound graph implies that it is possible, by following modifier-to-
head links, to reach a compound’s modifier by starting at its head,
as in the cycle silkworm wormwood woodcock cockhorse horse-
hair hairoil oilsilk.

Recall that the head and modifier family sizes count the number
of compounds sharing head or modifier. The count of the number
of compounds with which these compounds share a constituent
(henceforth the secondary family size; Baayen, 2010) was also
included as a predictor. (The secondary family size count was
orthogonalized with respect to the head and modifier family sizes
by taking residuals from a model regressing secondary family size
on the head and modifier family sizes.)

These three predictors (whether a constituent is used both as
head and as modifier, secondary family size, and being part of the
strongly connected component of the compound graph) are of

special interest, as the original motivation for exploring these
measures came from a spreading-activation approach to lexical
organization. If meanings are connected in a network, the proper-
ties of that network can be summarized using concepts from graph
theory, and the consequences of network organization should then
be visible in processing costs as gauged by visual lexical decision
and word naming latencies. This is indeed what Baayen (2010)
found. If activation spreading in a lexical network is indeed the
underlying process, these measures should not be predictive for the
simulated latencies generated by the naive discriminative reader,
as it addresses only the mapping from orthographic cues to mean-
ings and not subsequent semantic processes. Therefore, these
measures provide an excellent opportunity for falsifying the naive
discriminative learning approach.

As a final predictor we included the amount of information
carried by the compound, as gauged by means of Shannon’s
entropy applied to the probability distribution of the compound’s
constituents:

Hcompound � 	�
i�1

2

pilog2pi, (32)

with pi the probability of the i-th constituent, given the compound

pi �
fi�j�1
2 fj

. (33)

A nonlinear interaction involving head family size, secondary
family size, and being part of the strongly connected component
was modeled with a tensor product, using generalized additive
modeling (GAM). Table 20 lists the coefficients of the linear terms
of the resulting GAM model fitted to the observed response
latencies of the ELP. The regression surfaces for the compounds
outside and in the strongly connected component required 7.036
and 6.124 estimated degrees of freedom respectively and reached
significance (both p � .0003). These regression surfaces are
shown in the upper panels of Figure 13. For compounds not in the
strongly connected component, longer latencies are found for
small head family sizes and large secondary productivity. For
compounds in the strongly connected component, head family size
is facilitatory but mainly for secondary productivity values around
zero (i.e., for secondary family sizes near the mean of the distri-
bution). In other words, for less probable secondary family sizes,
longer latencies are found.

Figure 12. Observed and simulated group means for the baseline condi-
tion (Base), the form condition (Form), the semantic condition (Semantic),
and the pseudo-phonaestheme and phonaestheme conditions, using the data
of Bergen (2004). RT � reaction time.

Table 20
Coefficients for the Generalized Additive Model Fitted to
the Observed Response Latencies of Two-Constituent
English Compounds

Variable Estimate
Standard

error t p

Intercept 6.776 0.036 187.177 .0000
Modifier family size 	0.016 0.006 	2.595 .0096
Compound frequency 	0.042 0.003 	13.526 .0000
Modifier frequency 	0.008 0.003 	2.524 .0118
Head also used as modifier 	0.021 0.012 	1.758 .0791
Compound entropy 	0.061 0.013 	4.611 .0000
Compound length 0.017 0.003 5.196 .0000
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Table 21 lists the linear coefficients obtained when the same
generalized additive model specification is used for the simulated
latencies, defined as

simulated RT � log� 1

amod � whahead
� �I�l�8�� , (34)

with the expectation that wh � 1 because modifiers tend to be read
before heads. A good fit to the data was obtained for wh � 0.5 and
� � 3.5. Because the lengths of compounds were longer than those
of the simple, inflected, and derived words, ranging from 6 to 14, the
cutoff point for multiple fixations is placed slightly further into the
word, and � is set at a larger value to reflect that more than one
additional fixation may have been required. The by-item correlation
of observed and simulated latencies was r � .31, t�919�
� 9.71, p � .0001. The two tensor products both reached signifi-
cance (both p � .0001) for 8.07 and 7.78 estimated degrees of
freedom. A comparison of Table 20 and Table 21 shows that the
model correctly predicts facilitatory effects of compound frequency,
modifier family size, and modifier frequency and that it also mirrors
the shorter latencies for compounds with heads that are also used as
modifiers.

The empirical decision latencies are characterized by a facili-
tatory effect of compound entropy. The facilitatory effect of com-
pound entropy is consistent with the facilitatory effect of inflec-
tional entropy. When a word is characterized by a higher amount
of information, carried by its inflectional paradigm or carried by its

Figure 13. Partial regression surfaces (modeled with tensor products) for observed (upper panels) and
simulated (lower panels) response latencies, for the interaction of Head Family Size 
 Secondary Productivity 

Membership of the strongly connected component of the compound graph. Fitted observed latencies specified
on the contour lines are on the log scale. Fitted simulated latencies are also on a log scale, as defined by Equation
34. RTs � reaction times.

Table 21
Coefficients for the Generalized Additive Model Fitted to
the Simulated Response Latencies of Two-Constituent
English Compounds

Variable Estimate
Standard

error t p

Intercept 2.477 0.232 10.675 .0000
Modifier family size 	0.192 0.040 	4.771 .0000
Compound frequency 	0.111 0.020 	5.651 .0000
Modifier frequency 	0.148 0.020 	7.304 .0000
Head also used as modifier 	0.206 0.076 	2.709 .0069
Compound entropy 0.086 0.085 1.006 .3148
Compound length 0.160 0.021 7.502 .0000
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constituents, as in the case of compounds, there is more informa-
tion about the word available in long-term memory. Therefore, a
higher entropy (more information in memory) predicts shorter
response latencies in the lexical decision task. The model, how-
ever, does not capture the facilitation from compound entropy,
which suggests to us that the compound entropy effect in the
observed latencies reflects a processing stage subsequent to the
initial process of activating meanings from orthographic cues.

The magnitudes of the effects of compound frequency and
modifier frequency are out of balance in the model, which over-
estimates the effect size of modifier frequency and underestimates
the effect size of compound frequency. As with the simulation of
derived words, this is due to information about semantic opacity
being withheld from the model. Nevertheless, even though the
model assumes full transparency, whole-word frequency effects do
emerge, indicating that semantic opacity is not the only force
underlying whole-word frequency effects.

The regression surfaces estimated for the simulated latencies
are shown in the bottom panels of Figure 13. It is clear that the
model does not capture the full details of the interaction of
Head Family Size 
 Secondary Productivity 
 Membership in
the strongly connected component. Nevertheless, there are
some encouraging similarities. For compounds outside the
strongly connected component (left panels), the model captures
the facilitation for large head families and part of the inhibition
for small head families and low secondary productivity. The
model fails to capture that inhibition is strongest for small head
family size and large secondary productivity. For the com-
pounds in the strongly connected component, the model faith-
fully replicates the trough that is visible for the observed
latencies for zero secondary productivity (the mode of the
distribution of secondary productivity values).

The ability of the model to approximate the effects of sec-
ondary productivity and membership in the strongly connected
component came as a surprise to us. We thought that without
further knowledge of the semantic relations between the seman-
tic nodes and without a mechanism of spreading activation in
this network of semantic relations, these effects would not
emerge in the naive discriminative reader. Because these effects
are nevertheless present in the simulated latencies, it must be
the case that the distributional information on the basis of which
the weights are estimated is not uniformly distributed with
respect to secondary productivity and membership in the
strongly connected component. We therefore examined more
closely how dissimilar and similar words are as a function of
their membership of the strongly connected component and
their secondary productivity.

The Levenshtein distance of the modifier to the head in the
compounds in the strongly connected component is signifi-
cantly smaller than the corresponding distance for compounds
that are not part of the strongly connected component,
t(663.2) � 	2.34, p � .0194. Furthermore, the mean of the
average Levenshtein distances of constituents in the strongly
connected component to any other constituent is significantly
smaller than the mean of the average distances calculated for
constituents outside the strongly connected component,
t(426.22) � 	1.97, p � .0496.

Finally, although there is no correlation of this average Levenshtein
distance for modifiers and secondary productivity, r � 0, t(919) �

	0.07, p � .9432, the corresponding correlation for the head is
markedly present, r � 	.21, t(919) � 	6.51, p � 0, such that
greater average Levenshtein distances predict reduced secondary pro-
ductivity. In other words, the more similar a word is to other words,
the greater its secondary productivity is. This pattern of results helps
explain why the interaction displayed in Figure 13 pivots around the
head and not around the modifier: It is only heads, and not modifiers,
that are nonuniformly distributed with respect to their similarity to
other constituents.

The nonuniform distribution of form similarity with respect
to secondary productivity and membership in the strongly con-
nected component implies a nonuniform distribution of the
difficulty of discriminative learning. Words with denser neigh-
borhoods are more difficult to associate with their meanings. As
a consequence, the effects of secondary productivity and mem-
bership in the strongly connected component may, at least in
part, be effects of neighborhood similarity in disguise.

We conclude our discussion of compounds with a comment
on the observation, coming from recent eye-tracking studies,
that compound frequency effects can be present already at the
first fixation (Kuperman et al., 2008, 2009). Following Bruza,
Kitto, Nelson, and McEvoy (2009a, 2009b), one could attribute
such an early effect as arising due to quantum entanglement.

Nelson, McEvoy, and Pointer (2003), in a study on cued
recall, showed that connections among a target word’s associ-
ates facilitate recall regardless of the number of connections
returning from those associates to the target. They proposed an
“activation at a distance” equation that outperformed a spread-
ing activation account. Bruza et al. (2009a) explored the pos-
sibility of accounting for such “spooky distance effects” in
terms of quantum entanglement. For compound processing,
quantum entanglement might likewise account for the appar-
ently simultaneous activation of the first constituent and the full
compound.

However, within the context of naive discriminative learning,
the early effect of compound frequency in the eye-movement
record follows straightforwardly. To simulate first fixation du-
rations, we assume that only the first constituent of the com-
pound is visible and that there is sufficient parafoveal informa-
tion to clarify that the modifier is not followed by a space.
Modeling the first fixation duration as proportional to
log�1/amod�, we obtain significant facilitatory effects of modi-
fier frequency, modifier family size, and also compound fre-
quency, ̂ � 	0.08, t(916) � 	3.44, p � .0006. If we assume
that the first character of the head is also available, the facili-
tatory effect of compound frequency increases and remains
significant, ̂ � 	0.17, t(916) � 	6.47, p � .0001. In other
words, naive discriminative learning obviates the need for an
appeal to quantum entanglement. The activation at a distance
phenomenon reported by Nelson et al. (2003) may likewise find
an alternative explanation in discriminative learning.

Phrasal Effects

The frequency effects observed for inflected words, derived words,
and compounds were replicated in our simulation studies without any
assumptions about processes or representations that would be specif-
ically morphological in nature. The naive discriminative reader there-
fore predicts frequency effects also for multiword sequences that are
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not compounds or other morphological units: The model is trained on
sequences of words (see Table 11) and not on isolated words. A
model that does not presuppose a strict distinction between lexicon
and syntax fits well with recent linguistic theories rejecting a strict
boundary between morphology and syntax (as typically assumed in
mainstream generative grammar) and instead situating morphology
and syntax on a continuum with pairings of form and meaning (often
referred to as constructions) exhibiting different degrees of complex-
ity (Booij, 2010; Goldberg, 2006; Jackendoff, 2009).

In what follows, we explore two kinds of phrasal effects: a
phrasal frequency effect (facilitating phrasal comprehension) and a
phrasal exemplar-prototype effect, affecting the processing of in-
dividual words, that is structurally similar to the relative entropy
effect discussed above for Serbian nouns.

Phrasal frequency effects. Multiword frequency effects have
recently been reported (Arnon & Snider, 2010; Bannard & Mat-
thews, 2008; Tremblay & Baayen, 2010), even for n-grams that are
fully transparent and fully compositional. Within the present
framework of discriminative learning, conditional on learning not
being restricted to words in isolation, such phrasal frequency
effects should emerge.

To test this prediction, we selected from the 11,000 preposi-
tional phrases in the model’s lexical input 558 phrasal pairs, such
as in a flour (low frequency, 2 occurrences in the BNC) and in the
flour (high frequency, 37 occurrences in the BNC), comprising
133 different nouns and 39 different prepositions. For each pair,
one phrase had a high frequency and the other had a low fre-
quency. For each phrase, a comprehension latency was simulated
on the basis of the (unweighed) activations of the three constitu-
ents:

Simulated latency � log� 1

anoun � apreposition � adeterminer
� .

(35)

The pairwise differences in the simulated latencies and the
corresponding pairwise differences in trigram frequencies were
significantly correlated r�	.17, t(556)�	4.07, p�.0001. The
facilitation from frequency was confirmed by a mixed-effects
regression model fitted to the simulated latencies with as predic-
tors the log-transformed frequency of the trigram in the BNC, the
identity of the determiner (a or the as fixed-effect factor), and
preposition and noun as random-effect factors. In addition to
random intercepts, random slopes for frequency were supported by
likelihood ratio tests for both random effect factors (ps � .0001).
A third potential random-effect factor, the combination of prepo-
sition and noun, did not explain any variance was removed from
the model specification. The identity of the determiner and trigram
frequency emerged with independent main effects, with phrases
with the and higher frequency phrases having shorter simulated
latencies (frequency: ̂ � 	0.01, t � 	3.17).

It is crucial that an effect of phrasal frequency is predicted by
our model without there being explicit representations for prepo-
sitional phrases in a model that is fully compositional and ex-
tremely economical in the number of semantic representations that
it admits. What this simulation study shows is that the benefits of
experience for compositional phrases, as attested recently in the
behavioral study of Arnon and Snider (2010) and the electrophys-
iological study of Tremblay and Baayen (2010), may be under-

stood without postulating that phrases are somehow “stored.”
(Such storage would lead to a combinatorial explosion of supra-
lexical representations.) Further evidence for this possibility is
reported in Baayen and Hendrix (2011), who successfully simu-
lated a phrasal frequency effect for the four-word materials used in
Experiment 1 of Arnon and Snider (2010).

Phrasal paradigmatic effects on single-word lexical process-
ing. In the framework of discriminative learning, morphological
family size and inflectional paradigmatic effects do not arise due to
coactivation of morphologically related words. Instead, experience
with morphologically related words makes it possible for their
base words to be learned better, resulting in stronger connections
from form to meaning. If a strict division between morphology and
syntax is abandoned, experience with words in phrasal rather than
morphological contexts should also affect learning. We may ex-
pect that, just as a Serbian noun incurs a processing cost if its use
of case inflections is different from the prototypical use of case
inflections in its inflectional class, English nouns will occur a
processing cost if their phrasal use is atypical.

To test this prediction, we considered simple prepositional
phrases in English, consisting of a preposition, a determiner, and a
noun. The prepositions were taken from the set above, across,
against, along, amid, amidst, among, amongst, around, at, atop,
before, behind, below, beneath, beside, besides, between, beyond,
following, from, in, inside, into, near, next, off, on, onto, outside,
over, past, round, through, to, toward, towards, under, under-
neath, up, upon, with, within, and without. The determiners were a
and the, and the noun was selected from the 1,452 simple words
that have a nominal reading (and possibly a verbal reading) and for
which response latencies are available in the ELP.

Using the Google 1T n-gram data (Brants & Franz, 2006), we
compiled a data set of 38,577 trigrams with the definite article and
a data set of 14,851 trigrams with the indefinite article. For both
data sets, we extracted the Google 1T 3-gram frequency, from
which we also calculated the frequencies of the prepositions
summed across all the trigrams in which they occurred. As illus-
trated for a sample of 3-grams in Table 22, the n-gram frequencies
and prepositional frequencies were transformed into probabilities,
which served as input for the calculation of relative entropies (to
which we will refer as prepositional relative entropies).

The prepositional relative entropies for indefinite and definite
phrases were highly correlated (r�.66), and both were predictive for
the response latencies to simple nouns. In the models for the observed
and simulated latencies of simple nouns presented above (see Tables
10 and 11), we used the indefinite prepositional relative entropy. It
seemed slightly more robust, possibly because lexical decisions for
words presented in isolation are elicited for words in an indefinite
context.

The predictivity of prepositional relative entropy for isolated
word reading in English provides further support for our hypoth-
esis that the processing of words is codetermined not only by the
morphological contexts in which that word occurs but also by its
syntactic contexts. What is crucial is not simply the frequency of
such syntactic contexts but also how such syntactic contexts are
structured paradigmatically. The unconditional probabilities with
which prepositions are used represent a noun’s prototypical prep-
ositional usage. The nouns’ own probabilities of occurrence with
these prepositions represent exemplar profiles. The prepositional
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relative entropy captures the distance between an exemplar and its
prototype.

It is possible that exemplars have their own representation and
that in lexical processing the distance of that representation to the
prototypical representation is somehow taken into account. How-
ever, explanations positing exemplar representations place high
demands on memory capacity. By contrast, the naive discrimina-
tive learning framework, in which relative entropy effects emerge
naturally, imposes very limited demands on memory, and it does
not require a separate process evaluating an exemplar’s distance to
the prototype.

It is important to realize that prepositional paradigms capture
only one paradigmatic aspect of phrasal syntax. For instance, our
theory predicts that the prepositions used in verbal adjuncts con-
stitute a second paradigmatic domain for which a relative entropy
can be defined. This relative entropy should correlate positively
with response latencies to verbs. Phenomena typically explored
with collostructional analysis (Gries & Stefanowitsch, 2004; Ste-
fanowitsch & Gries, 2003) may similarly constitute dimensions of
paradigmatic variation affecting lexical processing.

General Discussion

The experimental data on the reading of Serbian case-inflected
nouns reported in the present study, combined with the data
previously obtained by Milin, Filipović Ður�ević, and Moscoso
del Prado Martı́n (2009), indicate that the processing of a word
form is codetermined by the probabilities of all inflectional vari-
ants of this particular word and the probabilities of the exponents
of inflectional class to which a given word belongs. For English,
we have shown that the processing latencies of simple nouns are
similarly codetermined by the probabilities with which these nouns
co-occur with prepositions vis-à-vis the unconditional probabilities
of these prepositions. These experimental results fit well with
previous data documenting the importance of paradigmatic struc-
ture for lexical processing, as witnessed by the effects of inflec-
tional entropy and morphological family size.

We have shown that a naive discriminative learning architecture
suffices to capture these paradigmatic effects for morphological
and for phrasal processing. Although the good fit to the Serbian
data initially obtained with the naive discriminative reader could
have been due to the restricted data set on which the model was
trained, the subsequent good fits obtained for the English data,
based on a broad and general instance base extracted from the

BNC, indicate that overfitting is not at issue. We have also shown
that the naive discriminative reader is able to account for a wide
range of phenomena, from morphological effects to pseudo-
prefixed words and from phonaesthemes to phrasal frequency
effects.

The success of the naive discriminative reader raises the ques-
tion of whether other models might be equally successful. In what
follows, we therefore compare the naive discriminative reader in
some detail with the Bayesian reader of Norris (2006) and briefly
discuss other models of word recognition.

In the Bayesian reader model for word recognition, the proba-
bility of identifying a word wi, given input I, is defined as

Pr�wi�I � �
Pr�wi� Pr�I�wi��i�j
m Pr�wj� Pr�I�wj�

. (36)

The likelihood function Pr�I � wi� is defined stochastically as a
function of time and the Euclidian distance of wi to the input as
available at a given point in time. We skip the details of the
stochastic modeling of the time course of lexical activation, which
render the model computationally extremely demanding. Instead,
we discuss a simplified version that we have implemented (hence-
forth, the easy Bayesian reader).

Recall that for the naive discriminative reader, a word’s ortho-
graphic input was coded as the set of its unigrams and bigrams. For
the easy Bayesian reader, we encoded a word’s form as a binary
vector indicating which of the 27 � 272 � 756 unigrams and
bigrams were instantiated for that word. For a prime–target pair,
following Norris and Kinoshita (2008) that in masked priming
prime and target are blurred into one percept, the input was
encoded as binary vector representing the prime and the target
simultaneously. The likelihood Pr�I � wi� was assessed as the Eu-
clidean distance of the binary orthographic vectors of the visual
input I and word wi, normed to the interval �0, 1�. The probability
Pr�wi� was estimated by its relative frequency in our corpus.
Finally, the response latency for wi was defined as 1/Pr�wi � I� and
was log-transformed to obtain an approximately normal response
variable.

We investigated how well the predictions of the easy Bayesian
reader fitted the primed self-paced reading latencies of our Serbian
case-inflected nouns (Experiment 1). The simulated latencies en-
tered into a significant correlation with the observed by-item mean
self-paced reading latencies, r � .15, t(1185) � 5.16, p � 0,
albeit to a lesser extent than the latencies simulated using naive

Table 22
Phrase Frequency and Probability and Prepositional Frequency and Probability for 7 Prepositions in Indefinite Prepositional
Phrases With Plant

Phrase Phrasal frequency Phrasal probability Preposition Prepositional frequency Prepositional probability

on a plant 28,608 0.279 on 177,908,042 .372
in a plant 52,579 0.513 in 253,850,053 .531
under a plant 7,346 0.072 under 10,746,880 .022
above a plant 0 0.000 above 2,517,797 .005
through a plant 0 0.000 through 3,632,886 .008
behind a plant 760 0.007 behind 3,979,162 .008
into a plant 13,289 0.130 into 25,279,478 .053

Note. For phrasal probabilities, we backed off from zero by adding one to the phrasal frequencies. The relative entropy for this example is 0.143.
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discriminative learning (r � .23). The model does not capture the
interaction of Weighted Relative Entropy 
 Case nor the interac-
tion of Weighted Relative Entropy 
 Gender. After removal of
these interactions from the model specification, the model sum-
marized in Table 23 was obtained. The model correctly predicts an
inhibitory effect of weighted relative entropy. It also correctly
predicts inhibition from word length and shorter latencies for
nouns in nominative case. The effect size for nominative case,
however, is four times as large as the effect of the identity priming
condition, instead of being an order of magnitude smaller (com-
pare Table 5 and Figure 1). Apparently, the easy Bayesian reader
captures important aspects of the data but with reduced precision.
Because the way we coded the orthographic input differs from the
implementation in the original Bayesian reader model, it is possi-
ble that the original full model will provide enhanced results.

Assuming that this is indeed the case, three important differ-
ences between the two approaches should be noted. First, the
Bayesian reader compares the orthographic input with ortho-
graphic representations in memory. In our implementation of the
easy Bayesian reader, it is assumed that Serbian words inflected
for case and number have such orthographic representations. In
other words, the easy Bayesian reader is a full-form-based model.
By contrast, the naive discriminative reader is a full-decomposition
model, in which inflected forms do not have their own represen-
tations in memory and in which orthographic form information is
directly mapped onto meaning representations.

Second, the growth rate of the easy Bayesian reader is quadratic
in the number of entries N in the lexicon. Simulating a response
latency for each of the 1,776 distinct Serbian case-inflected word
forms requires the calculation of 1,7762 � 3,154,176 distances.
For the discriminative learning model, we have 27 � 272 � 756
orthographic representations for unigrams and bigrams (including
the space character) and 278 semantic representations (270 noun
lemmas, 6 cases, and 2 numbers), in all M � 278 � 756 � 1,034
representations. The number of weights in the model is 756 �

278 � 210,168. Because each additional meaning node requires
only 756 additional weights, the growth rate of the discriminative
learning model is linear. Even for the small data set of Serbian
nouns, the number of distances the easy Bayesian reader has to
compute is already 15 times the number of weights that must be set
in the discriminative learning model.

Third, the Bayesian reader simulates the time course of lexical
activation, but the easy Bayesian reader and our discriminative
learning model do not. A time course for the activation of a word
wi can in principle be generated by using the probability Pr�wi � I�
to estimate the word’s drift rate in a lexical diffusion model
(Ratcliff, Gomez, & McKoon, 2004).

This comparison illustrates the dilemma facing computational
models of simple word recognition that build on a lexicon of
representations for simple words, not only the Bayesian reader but
also others such as ACT-R (see, e.g., Van Rijn & Anderson, 2003)
and the dual route cascaded model (Coltheart et al., 2001). For the
modeling of morphological and phrasal effects, this family of
models has two options.

A first option is to add complex words to the lexicon, as if they
were simple words. For the small data set of Serbian case-inflected
nouns, the results obtained with the easy Bayesian reader suggest
this may work in principle. For realistic lexicons, the price of a
lexicon with huge numbers of entries may become prohibitive. For
instance, the number of n-gram types on which our model was
trained (1,496,103) represents only a fraction of the number of
n-grams occurring in the BNC alone. Yet no fewer than
2,238,324,000,000 distances would have to be evaluated to esti-
mate the posterior probabilities of just these phrases in the Bayes-
ian reader approach.

A second option is to restrict the lexicon to monomorphemic
words and to supplement current models with a probabilistic
parser. However, for such a parser to work, a morpheme-based
theory of morphology would have to be assumed. Apart from
being linguistically unattractive, such an approach would make the
wrong predictions for phonaesthemes and pseudo-derived words.
Furthermore, it is unclear to us how and why such a parser would
give rise to paradigmatic entropy effects in lexical processing.

The naive discriminative learning approach that we have pur-
sued is similar to the triangle model (Harm & Seidenberg, 1999,
2004; Seidenberg & Gonnerman, 2000) in that the orthographic
input is mapped onto meaning without intervening lexical repre-
sentations and without requiring explicit rules for parsing. It differs
from the triangle model in several ways, however. First, we have
not made any attempt to model phonology. Hence, our model is
more limited and does not provide accurate predictions for word
naming and reading aloud. Given the neurophysiological evidence
for two cortical streams in reading (a ventral, occipital–temporal,
stream used when accessing familiar words encoded in lexical
memory and a dorsal, occipital–parietal–frontal, stream used when
mapping sublexical spelling onto sounds; see, e.g., Borowsky et
al., 2006), we believe it is worth exploring whether our model
could function as part of the lexical (ventral) route in, for instance,
the DRC architecture (for a proposal, see Hendrix & Baayen,
2011).

A second difference with the triangle model is that we have
substantially simplified the computational engine, which does not
incorporate hidden layers and does not use backpropagation for
estimating connection weights. All we need for modeling morpho-
logical effects is a (symbolic) layer of orthographic nodes (uni-
grams and bigrams) and a (symbolic) layer of meanings. This
offers the advantages of simplicity and interpretability: The acti-
vation of a meaning is the model’s discriminative learning estimate
of the posterior probability of that meaning, given its unigrams and

Table 23
Coefficients Estimated for the Simulated Self-Paced Reading
Latencies Using the Easy Bayesian Reader Model

Variable Estimate
Standard

error t p

Length 0.046 0.017 2.761 .0058
Weighted relative entropy 0.224 0.066 3.379 .0008
Target gender � masculine 	0.227 0.053 	4.300 .0000
Normalized Levenshtein distance 0.236 0.145 1.629 .1036
Target lemma frequency 	0.999 0.026 	37.928 .0000
Target case � nominative 	0.854 0.054 	15.746 .0000
Prime word frequency 	0.079 0.019 	4.134 .0000
Priming condition � DSSD 	0.076 0.082 	0.932 .3515
Priming condition � SS 	0.270 0.157 	1.715 .0865

Note. DSSD � different stem and same inflection or different inflection
and same stem; SS � identical stem and inflection.
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bigrams and the co-occurrence probabilities of these unigrams,
bigrams, and meanings.

A disadvantage of the present model is that it is blind to the
semantic relations between words. The connectionist model pre-
sented in Chapter 10 of Moscoso del Prado Martı́n (2003), in
which orthographic input units map, via a hidden layer, onto
independently established, corpus-based semantic vector represen-
tations of word meanings, offers the advantage of better modeling
the role of semantic similarity in word processing. Thus, the effect
of the cosine distance in semantic space between prime and target,
which reached significance as predictor for the self-paced reading
latencies of Serbian case-inflected words in Experiment 1, is not
captured by our model.

Finally, we note that the naive discriminative reader is compat-
ible with theories assigning hierarchical structures to complex
words. For instance, for rethinking, a structure such as [REPEAT
(THINK � CONTINUOUS)] specifies scope relations that are
part of the meaning of this word. All that the naive discriminative
reader does is assign probabilities to the meanings “repeat,”
“think,” and “continuous.” Therefore, the current implementation
is consistent with the possibility that semantic rules build such
hierarchical structures on the basis of these meanings. The present
simulation results indicate that, for explaining the consequences of
morphological structure as gauged by the lexical decision task, it
is not necessary to duplicate such hierarchical structure at a mor-
phemic level with structures such as re�think � ing�. Given
discriminative learning, such morphemic structures are redundant.

This also absolves the modeler from thorny implementational
problems, such as how to represent allomorphic variants. By way
of example, consider the Dutch diminutive suffix, which appears
in five forms: je (muis-je, “small mouse”), pje (bloem-pje, “small
flower”), etje (wang-etje, “small cheek”), kje (woning-kje, “small
house”), and tje (bever-tje, “small beaver”). Models with morpho-
orthographic morphemic representations have to posit five differ-
ent orthographic morphemes for the diminutive. Thus, they need
some competition mechanism between these (highly similar) allo-
morphs, as well as a disambiguation mechanism distinguishing the
allomorph je from the personal pronoun je (“you”). These kinds of
complications do not arise for the naive discriminative reader.

Concluding Remarks

We have shown that basic principles of discriminative learning
applied to the mapping of form to meaning suffice to explain a
wide range of phenomena documented for the processing of com-
plex words and n-grams in reading. The naive discriminative
reader model is parsimonious in its parameters. The basic engine
estimating the connection weights of the Rescorla–Wagner net-
work is parameter free. We introduced one parameter that allows
the weight of syntactic adjustments (affixal meanings) to be less
than the weight of lexical meanings. We also made use of two
further parameters for modeling the influence of the highest acti-
vated competitors. Longer words often require more than one
fixation. As the current implementation of the naive discriminative
reader is blind to how the eye moves through longer words, a
parameter was invested in accounting for the costs of planning and
executing additional saccades. Finally, for the modeling of prim-
ing, we needed one additional parameter, the weight for the rela-
tive importance of the prime based on the compound cue theory of

Ratcliff and McKoon (1988). The naive discriminative reader is
also sparse in the number of representations required: at the
orthographic level, letter unigrams and bigrams, and at the seman-
tic level, meaning representations for simple words, inflectional
meanings such as case and number, and the meanings of deriva-
tional affixes. As a consequence, the number of connections re-
quired is a linear function of meaning representations.

The model contrasts with the many unimplemented verbal mod-
els proposed for morphological processing. According to the su-
pralexical model of Giraudo and Grainger (2001), whole-word
representations would mediate access to constituents. According to
the obligatory decomposition model of Taft (2004), constituents
would mediate access to whole-word representations. The parallel
dual route models of Frauenfelder and Schreuder (1992),
Schreuder and Baayen (1995), and Baayen et al. (1997) allow
whole-word and constituent access representations to race for
word recognition. Computational implementations correctly repli-
cating paradigmatic effects, as gauged by family size and entropy
measures, are not available. We doubt that insightful computa-
tional implementations of such models can ever be made to work,
given the subtlety of, for example, the prepositional entropy effect
in English. This is only one of the many paradigmatic dimensions
that likely codetermine single-word reading.

Although our model can be viewed as a simplified connectionist
model, it can also be viewed as a symbolic Bayesian model
specifying, for a given orthographic input, a distribution of prob-
abilities over the meaning representations. In other words, the
naive discriminative reader is as a statistical classifier grounded in
basic principles of human learning. Baayen (in press) showed, for
a binary classification task, that the naive discriminative reader
performs with a classification accuracy comparable to that of
state-of-the-art classifiers such as generalized linear mixed models
and support vector machines.

We note here that the naive discriminative reader is compatible
with the results of Bowers, Davis, and Hanley (2005; for a repli-
cation in visual lexical decision, see Baayen et al., 2007). This
suggests that the meanings of partially matching words become
accessible irrespective of whether they are legitimate morpholog-
ical constituents.

Although the naive discriminative reader does not incorporate
explicit parsing rules, it is sensitive to the different degrees of
productivity of derivational suffixes and therefore fits well with
a-morphous theories of morphology (S. Anderson, 1992). The
Rescorla–Wagner engine of the model can be viewed as a formal,
computational implementation of the notion of analogy in word
and paradigm morphology (Blevins, 2003; Matthews, 1974), a
tantalizing notion in linguistics that remains frustratingly vague
without computational implementation.

The inductive modeling approach that we have pursued in
this work contrasts with deductive styles of modeling, in which
processes (literal brain processes or metaphorical cognitive
processes) are posited, from which processing consequences are
derived and then tested against observed data. The advantage of
the deductive style is that observed effects can be related to and
understood in terms of the processes originally posited and
implemented in the model. The present inductive approach
shares with the deductive approach that, at the start, a cognitive
process is posited. In our case, this process is discriminative
learning as formalized in the Rescorla–Wagner equations. How-
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ever, we find it extremely difficult to derive predictions for the
consequences of discriminative learning for the adult system, as
formalized by the equilibrium equations of Danks (2003), when
the weights are set on the basis of realistic language input. This
is why we have adopted an inductive approach in which sim-
ulated processing costs generated from the combination of real
data and a cognitive learning principle are pitched against an
array of empirical results. The advantage is precision and model
simplicity; the disadvantage is “explanatory disappointment”
(i.e., results now follow from the data and a simple learning
principle, rather than from more intuitively accessible higher
order explanatory principles). Nevertheless, we think it is worth
considering that the simpler explanation may be on the right
track.

In a recent review article, Evans and Levinson (2009) argued
that there are no language universals and that we are the only
species with a communication system that is fundamentally
variable at all levels of structure, across time, and across space.
One of the central questions for the cognition of language that
they put forward is whether the very different language systems
of the world can be acquired by the same general learning
strategies (p. 447). It is our hope that naive discriminative
learning provides a step forward as a powerful, flexible, com-
putationally implementable, and computationally efficient
learning algorithm.

Of course, many questions and challenges remain to be ad-
dressed. For instance, staying within the domain of morphology, it
is currently unknown whether naive discriminative learning can
predict the specific processing effects documented for the noncon-
catenative morphological systems of Arabic and Hebrew (Boud-
elaa & Marslen-Wilson, 2001; Deutsch, Frost, & Forster, 1998).
For languages with reduplication, we anticipate, higher order
n-gram orthographic representations will be essential, as well as
more sophisticated positional encoding. Another open issue is
whether the present approach generalizes to different writing sys-
tems, such as Chinese and Japanese. Furthermore, the current level
of simplicity achieved for English lexical decision cannot be
maintained for reading aloud, for which a dual route extension
based on the same principles of discriminative learning is required
(and sufficient) to obtain accurate predictions for word naming
latencies (Hendrix & Baayen, 2011). For multiple-fixation reading,
as well as for auditory comprehension, even more complex archi-
tectures will be required. Furthermore, we expect a complete
comprehension model will require a hierarchy of discriminative
learning systems. Finally, even for responses in visual lexical
decision, the naive discriminative reader provides a high-level
characterization of contextual learning that at the level of cortical
learning may be more adequately modeled by hierarchical tempo-
ral memory systems (Hawkins & Blakeslee, 2004; Numenta,
2010).

However, for understanding single word reading as gauged
by the lexical decision task, the naive discriminative reader
provides a computational model that is as simple and econom-
ical as possible but that also provides good fits to the empirical
data. When dealing with the intricacies of language as a com-
plex dynamic system and when probing the possible role of
context-sensitive, discriminative learning, there is no harm in
starting small.
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semantic analysis reveals absence of competition among related senses.
Psihologija, 42, 95–106. doi:10.2298/PSI0901095F

Frauenfelder, U. H., & Schreuder, R. (1992). Constraining psycholinguistic
models of morphological processing and representation: The role of
productivity. In G. E. Booij & J. V. Marle (Eds.), Yearbook of morphol-
ogy 1991 (p. 165–183). Dordrecht, the Netherlands: Kluwer Academic.

Gallistel, C. R. (2003). Conditioning from an information perspective.
Behavioural Processes, 62, 89 –101. doi:10.1016/S0376-
6357(03)00019-6

Gallistel, C. R., & Gibbon, J. (2002). The symbolic foundations of condi-
tioned behavior. Mahwah, NJ: Erlbaum.

Giraudo, H., & Grainger, J. (2001). Priming complex words: Evidence for
supralexical representation of morphology. Psychonomic Bulletin &
Review, 8, 127–131. doi:10.3758/BF03196148

Gluck, M. A., & Bower, G. H. (1988). From conditioning to category
learning: An adaptive network model. Journal of Experimental Psychol-
ogy: General, 117, 227–247. doi:10.1037/0096-3445.117.3.227

Goldberg, A. (2006). Constructions at work: The nature of generalization
in language. Oxford, England: Oxford University Press.

Good, I. J. (1953). The population frequencies of species and the estima-
tion of population parameters. Biometrika, 40, 237–264.

Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual
word recognition: A multiple read-out model. Psychological Review,
103, 518–565. doi:10.1037/0033-295X.103.3.518

Gries, S. (2004). Shouldn’t it be breakfunch? A quantitative analysis of
blend structure in English. Linguistics, 42, 639–667. doi:10.1515/
ling.2004.021

Gries, S. (2006). Cognitive determinants of subtractive word-formation
processes: A corpus-based perspective. Cognitive Linguistics, 17, 535–
558. doi:10.1515/COG.2006.017

Gries, S., & Stefanowitsch, A. (2004). Extending collostructional analysis:
A corpus-based perspective on alternations. International Journal of
Corpus Linguistics, 9, 97–129. doi:10.1075/ijcl.9.1.06gri

Harm, M. W., & Seidenberg, M. S. (1999). Phonology, reading acquisition,
and dyslexia: Insights from connectionist models. Psychological Review,
106, 491–528. doi:10.1037/0033-295X.106.3.491

Harm, M. W., & Seidenberg, M. S. (2004). Computing the meanings of
words in reading: Cooperative division of labor between visual and
phonological processes. Psychological Review, 111, 662–720. doi:
10.1037/0033-295X.106.3.491

Hawkins, J., & Blakeslee, S. (2004). On intelligence. New York, NY: Holt.
Hay, J. B. (2003). Causes and consequences of word structure. New York,

NY: Routledge.
Hendrix, P., & Baayen, R. H. (2011). The naive discriminative reader: A

dual route model of reading aloud using naive discriminative learning.
Manuscript submitted for publication.

Hockett, C. (1987). Refurbishing our foundations: Elementary linguistics
from an advanced point of view. Amsterdam, the Netherlands: Benja-
mins.
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Kostić, A., & Katz, L. (1987). Processing differences between nouns,
adjectives, and verbs. Psychological Research, 49, 229 –236. doi:
10.1007/BF00309031
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Appendix

Technical Details

Given the example lexicon shown in Table 8 and using as cues the letter unigrams a, d, h, l, n, s, we first
calculate the matrix of co-occurrence frequencies C, which has as its elements the frequencies f�i, j� with
which unigrams i and j co-occur:

C � �
a d h l n s

a 419 250 30 301 76 210
d 250 250 30 167 76 41
h 30 30 30 0 30 20
l 301 167 0 301 11 137
n 76 76 30 11 76 23
s 210 41 20 137 23 210

� (37)

The main diagonal of C contains the unigram frequencies, and the off-diagonal contains the co-occurrence
frequencies. In words such as lass, the s is counted once. In models with not only unigram but also bigram
cues, geminates are accounted for by bigrams (e.g., ss).

The co-occurrence matrix is transformed into a conditional probability matrix C�. Its elements specify the
conditional probability of unigram j, given unigram i.

(Appendix continues)
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p�j�i� � p�j, i�/p�i� � p�j, i���
j

p�j, i� � f�j, i���
j

f�j, i�. (38)

For the example lexicon, we have

C� � �
a d h l n s

a 0.33 0.19 0.02 0.23 0.06 0.16
d 0.31 0.31 0.04 0.21 0.09 0.05
h 0.21 0.21 0.21 0.00 0.21 0.14
l 0.33 0.18 0.00 0.33 0.01 0.15
n 0.26 0.26 0.10 0.04 0.26 0.08
s 0.33 0.06 0.03 0.21 0.04 0.33

� (39)

For instance, p�a�d� � 250/�250 � 250 � 30 � 167 � 76 � 41� � 0.31. The rows of C� add
up to unity (�j p�j�i� � 1).

The outcome matrix O specifies for each outcome (meaning) j and each cue (unigram) i the frequency with
which they co-occur:

O � �
and lass sad as land plural lad hand

a 35 134 18 35 11 77 156 30
d 35 0 18 0 11 77 156 30
h 0 0 0 0 0 20 0 30
l 0 134 0 0 11 57 156 0
n 35 0 0 0 11 23 0 30
s 0 134 18 35 3 23 0 20

� (40)

This matrix is transformed into a matrix of conditional probabilities p�o�i� specifying the probability of an
outcome o, given cue i:

p�o�i� � p�o, i�/p�i� � Oi,o��
j

Cj,i. (41)

For instance,

p�hand�h� �
30

30 � 30 � 30 � 0 � 30 � 20
� .21.

The conditional outcome matrix for the example lexicon is

O� � �
and lass sad as land plural lad hand

a 0.03 0.10 0.01 0.03 0.01 0.06 0.12 0.02
d 0.04 0.00 0.02 0.00 0.01 0.09 0.19 0.04
h 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.21
l 0.00 0.15 0.00 0.00 0.01 0.06 0.17 0.00
n 0.12 0.00 0.00 0.00 0.04 0.08 0.00 0.10
s 0.00 0.21 0.03 0.05 0.00 0.04 0.00 0.03

� . (42)

Let vj denote the j-th column of O�. The vector wj of weights on the connections from the cues to the j-th
meaning is obtained by solving

C�wj � vj. (43)

The weight matrix W ensues when (43) is applied once to each of the columns of O�, binding the resulting
vectors columnwise. That is, with columnwise:

(Appendix continues)
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W � �
and lass sad as land plural lad hand

a 0.38 	0.03 	0.41 1.03 � 0.38 	0.45 0.41 0
d 	0.16 	0.56 0.61 	0.44 0.16 0.53 0.39 0
h 	0.69 	0.05 	0.36 0.05 	0.31 0.49 0.36 1
l 	0.21 0.62 	0.17 	0.62 0.21 0.22 0.17 0
n 0.61 0.42 	0.19 	0.42 0.39 	0.09 	0.81 0
s 	0.21 0.34 0.54 	0.34 0.21 0.27 	0.54 0

� (44)

The simplifying assumption that the estimation of the weights for a given meaning can proceed independently
of the weights for the other meanings is what makes the model a naive discriminative learning model.

Let uj denote the vector specifying which unigrams are present in the input for meaning j. For hand,

u8 � �
1
1
1
0
1
0
� . (45)

The activation of meaning j is given by

aj � �
i

UijWij � WTuj. (46)

In this example, the activation of the meaning of hand is 1. As the unigram h occurs only in hand and hands,
its carries the full burden of activating this meaning.

The conditional co-occurrence matrix can be singular. For instance, when the words as and lass are removed
from the example lexicon,

C� � �
a d h l n s

a 0.31 0.31 0.04 0.21 0.09 0.05
d 0.31 0.31 0.04 0.21 0.09 0.05
h 0.21 0.21 0.21 0.00 0.21 0.14
l 0.32 0.32 0.00 0.32 0.02 0.01
n 0.26 0.26 0.10 0.04 0.26 0.08
s 0.24 0.24 0.12 0.02 0.14 0.24

�
is exactly singular, because the probabilities in the first two rows and those in the first two columns are
identical. We therefore use the Moore–Penrose pseudoinverse of the matrix, implemented in R as ginv in the
MASS package of Venables and Ripley (2003). The pseudoinverse of a matrix provides a unique solution that
is optimal in the least squares sense. Let C� denote the pseudoinverse of the conditional co-occurrence matrix
C�. Calculating the weight matrix amounts to solving a series of systems of equations

C�W � O (47)

achieved with the pseudoinverse as follows:

W � C�O. (48)
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