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Advertising to the enemy: enhanced floral fragrance increases beetle
attraction and reduces plant reproduction
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Abstract. Many organisms face challenges in avoiding predation while searching for
mates. For plants, emitting floral fragrances to advertise reproductive structures could
increase the attraction of detrimental insects along with pollinators. Very few studies have
experimentally evaluated the costs and benefits of fragrance emission with explicit
consideration of how plant fitness is affected by both pollinators and florivores. To determine
the reproductive consequences of increasing the apparency of reproductive parts, we
manipulated fragrance, pollination, and florivores in the wild Texas gourd, Cucurbita pepo
var. texana. With enhanced fragrance we found an increase in the attraction of florivores,
rather than pollinators, and a decrease in seed production. This study is the first to
demonstrate that enhanced floral fragrance can increase the attraction of detrimental
florivores and decrease plant reproduction, suggesting that florivory as well as pollination has
shaped the evolution of floral scent.
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INTRODUCTION

Understanding how simultaneous selection pressures

from mutualists and antagonists affect phenotypic traits

remains a challenge to evolutionary ecologists. In plant–

insect interactions, costs associated with attracting

pollinators via inadvertent attraction of floral antago-

nists mean that increasing attractive traits may produce

diminishing fitness returns (Charnov 1979, Charlesworth

and Charlesworth 1987, Ashman 2002). Floral fragrance,

for example, advertises reproductive structures to pro-

mote pollinator fidelity and efficiency (Dobson 1994).

Heightened fragrance emissions could increase fitness for

pollen limited plants by attracting pollinators, and recent

efforts are underway to transform plants to make flowers

more fragrant (Dudareva and Negre 2005) and identify

more fragrant cultivars in order to enhance natural

pollination (Mena Granero et al. 2004). Floral antago-

nists, however, are navigating within the same scent

landscape as pollinators. If floral antagonists are also

attracted to fragrance emissions, the fitness benefits of

attracting pollinators with increased fragrance emission

may depend on the costs of attracting floral herbivores.

Floral herbivores can reduce fitness directly and indi-

rectly through seed predation (Thompson and Pellmyr

1991), damage to reproductive parts (Sowell and Wolfe

2010), and by reducing pollinator attraction (Lohman et

al. 1996). Our goal was to assess the costs and benefits of

enhanced fragrance for plant reproduction.

Foraging decisions by pollinators and florivores might

impose opposing selection on floral fragrance (Galen

1983), but because of the logistical challenges few studies

have tested this hypothesis. For example, studies that

attempt to correlate the size of the olfactory display

(concentration) with visitation by pollinators and

florivores are problematic because measuring fragrance

requires that the flower be enclosed, which prevents

floral visitation (but see Schiestl et al. 2011). There is

opposing selection pressure in sexually dimorphic

species where staminate flowers are often more fragrant

(Theis et al. 2007), and receive more pollinator visits

(reviewed in Ågren et al. 1999), but also attract more

florivores (Fenner et al. 2002, Theis et al. 2007) and tend

to incur more herbivory (Ågren et al. 1999). However,

these patterns could be due to flower size rather than

fragrance since staminate flowers are also larger than

their pistillate counterparts (Bawa and Opler 1975).

While opposing selection has been documented for floral
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morphology (Kudoh and Whigham 1998), sex ratio

(Wise and Hébert 2010), flowering phenology (Parach-

nowitsch and Caruso 2008), and flower number (Ohashi

and Yahara 2000), relatively few studies have experi-

mentally manipulated fragrance and even fewer have

manipulated florivores because of the difficulty in

controlling them without interfering with pollination.

The net fitness consequences of the olfactory display will

depend on the effects of floral traits on both pollinators

and florivores, and the relative importance of each

interaction for plant reproduction.

To ascertain the fitness consequences of the fragrance

display we manipulated fragrance, pollination, and

florivores on the Texas gourd, Cucurbita pepo var.

texana (Scheele) D. Decker (Cucurbitaceae). We en-

hanced the fragrance of Texas gourd flowers using the

dominant component of the fragrance blend, which was

most attractive to the specialist pollinators. By also

manipulating florivory and pollination, we could mea-

sure their direct fitness effects, indirect effects of

florivores on pollination, and the costs and benefits of

an enhanced fragrance display.

MATERIALS AND METHODS

Study system

Cucurbita pepo var. texana (Texas gourd hereafter),

an annual monoecious vine native to Texas, USA and

Mexico, is closely related to the domesticated C. pepo.

Flowers of both sexes last one day; they open at dawn

and wilt by late morning. Species in the genus Cucurbita

are attacked at all stages of development by diabroticite

beetles (squash and cucumber beetles; Metcalf and

Metcalf 1992). The major diabroticite of cucurbit crops

in Massachusetts is Acalymma vittatum, the striped

cucumber beetle, whose native range encompasses both

our field site and the native range of the Texas gourd.

Diabroticite adults are attracted to floral fragrance

(Metcalf et al. 1998). In addition to specialist herbivores,

there are also specialist pollinators. The specialist squash

bee, Peponapsis pruinosa (Hymenoptera: Apidae; Hurd

et al. 1971) has a range that extends throughout

Massachusetts and south and west to Texas and beyond.

Generalists such as bumble bees (Bombus spp.; Apidae)

and the introduced honey bee Apis mellifera (Hyme-

noptera: Apidae) also pollinate squash flowers (Shuler et

al. 2005).

Fragrance addition experiment

Texas gourd plants were germinated from seed

(USDA North Central Regional Plant Introduction

Station [NCRPIS], Ames, Iowa). They were planted in

the field at the Hampshire Farm (4282001700 N, 7283201700

E) at the four-leaf stage on 25 June 2008 in 14 rows of 12

plants each with 3 m between plants and 4 m separating

each row. The 168 plants were randomly assigned to one

of eight treatments in blocks (two rows of four to a

block, n¼ 21 plants/treatment) with a 23 23 2 factorial

combination of pollination treatments (natural pollina-

tion vs. hand pollination), florivory treatments (natural

florivory vs. beetle removal from flowers), and fragrance

(natural fragrance vs. fragrance addition). Kaolin

(Surround WP, Engelhard, New Jersey, USA) at 11

kg/378 L water was sprayed onto the plants before

transplantation to reduce early herbivory damage, which

can affect fragrance emission (Theis et al. 2009). Organic

fertilizer (3:4:4, N:P:K) was added twice to the soil (0.27

L per plant; Gardentone, the Espoma Company, Mill-

ville, New Jersey, USA). For all treatments, every

pistillate flower was treated on every plant five to six

days a week from the onset of flowering on 5 August

2008 through the end of the flowering on 29 August

2008. Every staminate flower was treated until 17

August 2008. After this date, a single focal staminate

flower was chosen per plant per day because the high

numbers of staminate flowers per plant made it

prohibitively time consuming to maintain beetle removal

and scent manipulation for every flower.

Pollination treatment.—All pistillate flowers in the

hand-pollination treatments were pollinated using pol-

len from anthers collected at 07:00 from randomly

selected staminate flowers planted in a distant field.

Pollen was mixed and added with a paintbrush to cover

the entire stigmatic surface. Flowers were also open to

natural pollinator visits in both the hand and natural

pollination treatments.

Fragrance treatment.—We chose the dominant com-

pound of the Texas gourd blend, 1,4 dimethoxybenzene,

for the fragrance enhancement treatment based on

trapping experiments that established this to be the

most attractive compound to the specialist squash bees

(Appendix). This compound represents approximately

90% of the entire floral scent display of this species

(Theis et al. 2009). At 05:30, all pistillate flowers

received a cotton swab cut in half and treated with

either 60 mg of 1,4 dimethoxybenzene dissolved in 100

lL of acetone for treated plants or 100 lL of acetone

alone for the controls; these scent emitters matched the

concentrations used in the trapping experiments (Ap-

pendix). Because of the large tubular nature of squash

flowers, these fragrance emitters were sheltered visually,

and from direct sun and wind, deep within the corolla.

Throughout the experiment, emissions are likely to have

varied somewhat depending on climatic conditions,

however, based on analyses of emitter concentrations,

1,4 dimethoxybenzene was emitted at an average of

;45-fold higher than naturally high levels of approxi-

mately 5.6 lg/h in Texas gourd flowers (N. Theis,

unpublished data), maximizing differences between the

natural level and the fragrance-enhanced treatment.

Florivore removal.—Beetles were counted in all

flowers and removed every 30 minutes with feather-

weight forceps between 06:00 and whenever flowers
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closed for the day. Beetles were removed and released

singly and randomly within the field. Control flowers

were handled to simulate conditions of the beetle

removal treatment.

Insect observations.—Insect visits to flowers in each

plot were observed for a two-minute period per flower

each day. For every flower, the number of insect visits

and time per visit was recorded. We also counted

approaches that did not result in visits (honey bees and

squash bees were not distinguished), hereafter described

as rejections. The order of observations on individual

plants was re-randomized daily to prevent bias. If time

permitted, plants were observed more than once.

Reproduction.—We measured reproductive parame-

ters similar to those used extensively with this species,

including fruit mass, total seed number, and seed mass

(e.g., Stephenson et al. 2004). Between three and eight

mature fruits were harvested per plant approximately 4–

7 weeks after anthesis to determine female fitness. Fruit

quality was determined by measuring fruit mass; an

important measure for farmers, but also one that is

affected by biotic interactions (Poulton et al. 2002,

Stephenson et al. 2004). Total seed number and average

mature seed mass were determined for each fruit.

Statistics.—All data were analyzed using SAS soft-

ware, version 9.2 (SAS Institute 2008) unless otherwise

stated. We analyzed the number of visits by squash bees,

honey bees, and striped cucumber beetles for each

observation, averaged within day if more than one

observation took place. To control for daily and

seasonal variation, we first determined the residuals

from a general linear model (GLM) on log transformed

data for mean visitation at each flower using time and

date as the independent factors. These residuals were

then used in a general linear model with block as a

random factor and fragrance enhancement, hand

pollination, and beetle removal as fixed factors, includ-

ing all of the interaction terms between treatments.

To determine whether insects prefer visiting staminate

or pistillate flowers, visitation was coded by floral sex,

and number of visits and time per visit were analyzed

using a paired t test on log-transformed data for squash

bees, honey bees, cucumber beetles, and pollinator

rejections with plant as the unit of replication.

To determine whether beetles repel pollinators, Spear-

man’s rank correlations were calculated on visitation

data with a two tailed probability using Systat Software

Version 12.0 (Systat Software 2007); visitation numbers

were averaged per flower and then per plant.

To determine the direct and indirect effects of

treatments on reproduction we analyzed fruit mass,

total seeds, and average mature seed mass per fruit as

the dependent factors in an ANOVA with fragrance

enhancement, hand pollination, and beetle removal as

fixed factors and block as a random factor, including all

of the interaction terms between treatments.

RESULTS

Fragrance treatment.—Striped cucumber beetles were

attracted to flowers with enhanced fragrance in both

staminate (F1, 113 ¼ 19.17, P , 0.0001) and pistillate

flowers (F1,98 ¼ 10.59, P ¼ 0.002; Fig. 1). Enhanced

fragrance roughly doubled the number of beetles per

flower (staminate 2.1-fold, pistillate 1.7-fold; Figs. 1 and

2). The specialist squash bee was not attracted to

fragrance-enhanced flowers (all P . 0.1; Fig. 1). The

generalist honey bee visited fewer staminate flowers if

fragrance was enhanced (F1, 113¼9.22, P¼0.003) but did

not discriminate pistillate flowers by fragrance treatment

(F1, 124¼ 0.82, P¼ 0.37). Similarly, visit length by honey

bees was lower on staminate flowers with added

fragrance than on control flowers (11 6 0.05 vs. 19 6

0.06 s, F1, 117¼ 13.42, P¼ 0.0004; all values presented as

mean 6 SE). Additionally, pollinators were significantly

more likely to reject staminate (but not pistillate) flowers

that had added fragrance (F1, 128¼7.51,P¼0.007; Fig. 1).
Florivore treatment.—The florivore removal treatment

significantly reduced the presence of cucumber beetles

on staminate and pistillate flowers (staminate, 0.69 6

0.08 beetles vs. 0.21 6 0.03 beetles, F1, 113 ¼ 36.97, P ,

0.0001; pistillate, 0.35 6 0.05 beetles vs. 0.12 6 0.03

beetles, F1,98 ¼ 13.64, P ¼ 0.0004) but did not affect

visitation or rejection by squash bees or honey bees (all

P . 0.32). The florivores spent significantly more time at

staminate flowers that had florivores removed (107 6

0.08 s vs. 113 6 0.03 s, F1,72¼ 4.90, P¼ 0.03). However,

visit length was not affected by florivore treatment for

any insect on pistillate flowers (all P . 0.1), nor for

pollinators on staminate flowers (all P . 0.1).

Pollination treatment.—Over the season, the pollina-

tor assemblage at squash flowers was composed almost

entirely of squash bees (59%) and honey bees (40%).

Pollination treatments had no significant effect on

whether flowers were visited (all P . 0.3), but there

was a significant pollination treatment 3 beetle removal

interaction for honey bee visit length (natural pollina-

tion with beetle control, 21 6 3 s; natural pollination

with beetle removal, 20 6 3 s; hand pollination with

beetle control, 18 6 3 s; hand pollination with beetle

removal, 20 6 3 s; F1,90 ¼ 5.90, P ¼ 0.02), and a

pollination 3 fragrance interaction for cucumber beetle

visit length (with natural pollination and natural fra-

grance, 114 6 6 s; with natural pollination and enhanced

fragrance, 112 6 7 s; with hand pollination and natural

fragrance, 120 6 0 s; with hand pollination and enhanced

fragrance, 117 6 3 s; F1,72¼ 4.15, P¼ 0.05).

Attraction to staminate vs. pistillate flowers.—Squash

bees did not distinguish between staminate and pistillate

flowers (df¼121, t¼1.70,P¼0.09). Honey bees, however,

were 66% more likely to visit pistillate than staminate

flowers (df ¼ 121, t ¼ 7.45, P , 0.0001), while striped

cucumber beetles were 66% more likely to visit staminate

than pistillate flowers (df ¼ 121, t ¼�3.84, P ¼ 0.0002).
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Pollinator rejections were 58% more likely at staminate

than pistillate flowers (df¼ 93, t¼�2.75, P¼ 0.007).

Correlations between visitors.—There was a significant

positive correlation between the per-plant average

number of cucumber beetles per flower and rejections

by pollinators (n ¼ 143, r ¼ 0.42, P , 0.001; staminate

and pistillate flowers analyzed separately showed

comparable results). Similarly, honey bee visitation

was negatively correlated with the number of floral

beetles (n ¼ 143, r ¼ �0.22, P ¼ 0.009). This pattern

persisted in staminate flowers alone (n¼ 141, r¼�0.17,
P¼ 0.04), but not pistillate flowers (n¼ 126, r¼�0.03, P
¼ 0.7). Squash bee visits were positively correlated with

beetles (n ¼ 143, r ¼ 0.23, P ¼ 0.006; staminate and

pistillate flowers analyzed separately showed compara-

ble results).

Treatment effects on reproduction.—Fragrance addi-

tion significantly reduced measures of reproduction

including fruit mass (natural fragrance, 124 6 4 g,

enhanced fragrance, 113 6 5 g; F1,96 ¼ 5.35, P ¼ 0.02)

and total seed production (natural fragrance, 240 6 6

seeds, enhanced fragrance, 220 6 6 seeds; F1,96¼5.02, P¼
0.03). For fruit mass, there was a significant interaction

between pollination and fragrance addition (F1,96¼ 5.27,

P¼ 0.02), such that hand pollination recovered mass lost

due to fragrance addition. Seed mass and fruit mass varied

with block (F19,96 . 2.0,P, 0.02 for both), but there were

no other main effects of either the pollination treatment or

the florivore treatment (all P . 0.1).

DISCUSSION

By advertising reproductive structures with floral

fragrances, plants risk attracting detrimental insects

along with pollinators. This negative fitness consequence

of a fragrance display has long been proposed (Galen

1983, Dobson 1994), but so far no study has simulta-

neously manipulated both scent and interactions to

determine the mechanisms underlying the effects of scent

on plant reproduction. We manipulated fragrance,

pollination, and florivores in the Texas gourd to

determine the effects of increasing fragrance emission

and provide the first evidence of a reproductive cost of

fragrance that is likely driven by the attraction of

florivores to fragrance-enhanced flowers.

We hypothesize that the increased abundance of

florivores is driving the detrimental effect of fragrance

enhancement. Fragrance enhancement increased beetle

abundance by 65% compared to control pistillate

flowers, and more than doubled beetles in staminate

flowers. This increase in beetle abundance may have

reduced reproduction directly, suggested by the reduc-

FIG. 1. Average number of visits by insects
at control and fragrance-enhanced pistillate and
staminate flowers. Error bars indicate þSE.
P values are displayed above significantly differ-
ent means.

FIG. 2. The average number of striped cucumber beetles
observed at flowers of each treatment during a 2-minute
observation (averaged over pollen addition treatment); present-
ed in order of beetle abundance. Error bars indicate one
standard error.
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tion in seed number that occurred regardless of hand

pollination treatment. However, scent could also have

indirect effects on reproduction by reducing pollinator

attraction, as evidenced by the fact that hand pollination

recovered the reduction in fruit mass due to enhanced

fragrance, and the significant increase in pollinator

rejections as beetle abundance increased. Although

pollinators were not identified unless they landed on

the flower, our data suggest these rejections may have

been driven by honey bees, since only honey bee visits

were negatively correlated with beetle abundance.

Staminate flowers harbored twice as many beetles as

pistillate flowers, which would explain why honey bees

avoided fragrance-enhanced staminate flowers but did

not discriminate in pistillate flowers (Fig. 2).

While the data suggest that high numbers of beetles

may have reduced pollinator visits, the low beetle

numbers achieved by the beetle removal treatment had

no effect on pollinators. Taken together these data

suggest that there may be a threshold below which plants

can tolerate beetles with no fitness reduction. Beetle

removal from pistillate flowers decreased beetle abun-

dance by 27% compared to controls, with no significant

increase in either pollinator attraction or plant repro-

duction (Fig. 2). This contrasts with the effect of

enhanced fragrance, which increased beetles and reduced

reproduction. Thus, traits that enhance beetle attraction

may reduce reproduction while traits decreasing beetles

below a threshold may have little effect.

The negative fitness consequences of beetle attraction

may be greater than recognized in this study due to other,

unmeasured costs. First, while fragrance attracted beetles

to pistillate flowers and reduced maternal reproduction,

beetle attraction was even higher to staminate flowers

where fitness was not measured. Because these beetles

feed on pollen (Metcalf and Metcalf 1992), the detri-

mental effects on staminate reproduction may be even

higher than for pistillate reproduction. Few studies have

measured the effect of florivory on paternal fitness; when

it has been measured, costs have been documented

(Krupnick and Weis 1999). Second, while bacterial wilt

was not present in our fields, it can be transmitted when

Acalymma vitattum defecate in flowers and is lethal for

the plant (Sasu et al. 2010). Thus, traits that attract

beetles to flowers, such as scent emission, may have more

negative consequences than our data show.

Pollinators were not attracted to fragrance-enhanced

flowers. This was anticipated for honey bees since our

trapping experiment found that 1,4 dimethoxybenzene

was no more attractive to these bees than controls, but

unexpected for squash bees who showed a strong

preference for this compound (Appendix). These spe-

cialist pollinators may respond to compound presence

but not concentration. There may be a trade-off between

accurately choosing rewarding flowers and flower visita-

tion rate (Chittka and Raine 2006), and concentration

might be irrelevant for specialist squash bees in a field of

flowers. For cucumber beetles who visit fewer flowers,

flower choice may be more important. Striped cucumber

beetle attraction to fragrance-enhanced flowers was

surprising, however, since they were not attracted to 1,4

dimethoxybenzene in trapping experiments (Lewis et al.

1990, Appendix). Insects use multisensory input to

identify flowers, including odor, color, shape, and even

texture (Raguso 2004). Fragrance-enhanced flowers are

therefore a more ecologically relevant way to assess

preferences than scent-emitting insect traps.

Fragrance can attract floral antagonists and thus may

be the result of a compromise between selection by

pollinators and floral antagonists (Galen 1983, Euler

and Baldwin 1996, Baldwin et al. 1997). Galen and

colleagues (2011) found a component of the bouquet of

Polemonium viscosum fragrance that acts defensively,

repelling florivores but also pollinators at high concen-

trations. Although other manipulations of scent in field

conditions have shown that scent is important for

pollinator attraction and effectiveness (Ashman et al.

2005, Kessler et al. 2008, Waelti et al. 2008, Galen et al.

2011), in our study we found that fragrance enhance-

ment had no significant effects on pollinators. While

specialist pollinators were attracted to 1,4 dimethoxy-

benzene at high concentrations in trapping experiments,

they did not discriminate between high and natural

levels in a field of flowers. Our work demonstrates that

there may be fitness costs due to beetle attraction when

scent is high, but that below a threshold beetle reduction

does not further benefit plants. Taken together, our

results suggest that there may be selection against high

emission rates due to the detrimental effects of beetle

attraction. Our study is the first to demonstrate that

enhanced fragrance from flowers can increase the

attraction of detrimental florivores and have significant

negative effects on plant reproduction. Thus, this work

adds to a growing body of evidence that florivores as

well as pollinators may have shaped the evolution of the

characteristic fragrances we associate with flowers.
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SUPPLEMENTAL MATERIAL

Appendix

Methods, results, and figure for trapping experiments (Ecological Archives E093-039-A1).
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