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Parasites are linked to the decline of some bee populations; thus, understanding defense
mechanisms has important implications for bee health. Recent advances have improved
our understanding of factors mediating bee health ranging from molecular to landscape
scales, but often as disparate literatures. Here, we bring together these fields and sum-
marize our current understanding of bee defense mechanisms including immunity,
immunization, and transgenerational immune priming in social and solitary species.
Additionally, the characterization of microbial diversity and function in some bee taxa
has shed light on the importance of microbes for bee health, but we lack information
that links microbial communities to parasite infection in most bee species. Studies are
beginning to identify how bee defense mechanisms are affected by stressors such as
poor-quality diets and pesticides, but further research on this topic is needed. We
discuss how integrating research on host traits, microbial partners, and nutrition, as well
as improving our knowledge base on wild and semi-social bees, will help inform future
research, conservation efforts, and management.

Introduction
Bees are important pollinators in both natural and agricultural ecosystems, but populations of many
species are at risk due to interacting stressors such as limited food resources, habitat loss, pesticides,
and parasites [1]. Emergent parasites are becoming increasingly important as bees are transported for
pollination services, thus spreading parasites to new geographic ranges and hosts [2]. The parasites of
bees are taxonomically diverse, ranging from metazoans such as nematodes and mites, to microbes
such as protists, fungi, bacteria, and viruses. Additionally, different parasites threaten bees during
larval and adult life stages, and different factors affect outcomes at particular stages [3]. Recent
reviews have synthesized current information on bee susceptibility to environmental stressors [4],
viruses [5] and fungal parasites [6], medicinal diets [7], and the impacts of parasites on bee foraging
behavior [8] and cognition [9]. Here, we evaluate recent literature on bee defense mechanisms against
parasites and pathogens, such as behavioral, chemical, and immunological adaptations, as well as
associations with beneficial microbial symbionts (see Table 1 for summary and definitions). We
discuss how those mechanisms are negatively impacted by stressors such as low-quality diets and
pesticide exposure. We use the term ‘parasite’ to refer to both macro-parasites such as parasitoids as
well as microbes, although we focus in this review primarily on microbial parasites. While important,
cleptoparasites were outside the scope of this review, although we address some relevant literature on
the topic.
Bees have diverse life-history strategies that impact their risk of parasitism. While the order

Hymenoptera is known for its eusocial insect clades, the majority of bee species are solitary or lack
clearly defined castes [10]. There are also many gradations of sociality in between eusocial and soli-
tary, including sub-social, semi-social, and facultatively social (collectively ‘presocial’ [11]; Table 2).
Social behavior affects parasite transmission and thus has important consequences for the adoption of
defense mechanisms, and so our review will highlight differences between host taxa that differ in
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sociality. While most studies on bee parasitism and immunity have been in eusocial honey bees (Apis mellifera
[12]) and bumble bees (Bombus spp. [13]) due to their tractability as study organisms and their importance in
agriculture, parasites have been identified in many solitary and presocial bee species [14,15]. Studies on the
defense mechanisms such as immunity are scarce for non-eusocial species (Table 3), and deserve further atten-
tion, given that many of those species provide valuable pollination services [16] and could serve as parasite
reservoirs for other host species [17].
Recent advances in genomics and transcriptomics have informed our perspective on bee health, but most of

these studies have yet to be summarized or connected to related disciplines such as genetics, physiology, or
landscape ecology. First, we summarize new ideas about whether the evolution of social behavior in insects

Table 1. Summary of defense mechanisms against microbial parasites in bees, separated into three non-mutually exclusive categories:
behavioral, immunological, and chemical.

Defense strategy Definition Bee species References

Behavioral

Allogrooming Grooming between members of a colony; can remove
parasites from grooming recipient but also transmit
parasites to groomer

Apis mellifera
Bombus spp.

[38,117]

Aggression towards
potentially infected
nestmates

Bees were stung and bitten more when coated with
cuticular secretions from an immune-challenged nestmate

Apis mellifera [38,118]

Removing/killing infected
brood

Bees may remove larvae or fill cells with soil if they are
infected with a parasite

Apis mellifera
Halictus spp.
Lasioglossum spp.
Evylaeus spp.
Nomia melanderi

[119] and references
therein, [120]

Hive fever Increased colony temperature via thorax vibration Apis mellifera [121]

Propolis production Propolis is a mixture of wax and resin; seals off crevices,
protects developing brood, and lowers bee immune gene
expression

Apis mellifera [122]

Immunological

General insect immunity Recognition and response to invader; production of AMPs;
results in phagocytosis and encapsulation

All bees [123]

Antimicrobial peptide (AMP)
production

Synthesized in the fat bodies, transported via hemolymph,
and degrades microbial invaders

All bees [124]

Melanization and
encapsulation

Melanin deposition around a foreign body All bees [125]

Immunization Protection of the host against a parasite upon secondary
exposure via a specific immune memory (i.e. immune
priming) or nonspecific immune up-regulation

Apis mellifera
Bombus spp.

[126]

Transgenerational immune
priming (TGIP)

Mother’s exposure to a parasite results in a protective
phenotype in offspring

Apis mellifera
Bombus spp.

[40]

Chemical

Cuticular secretions Compounds secreted by the cuticle, many of which have
antimicrobial properties

All bees, but varies
between species

[25]

Dufour’s gland Gland near the venom duct that produces chemicals All bees, but function
varies

[34]

Collection of exogenous
materials (plant products)

Many bees collect plant leaves, resins, and oils, which
protect their nest. This may also be considered a
‘behavioral’ defense.

Megachilidae (leaves
and resins)
Melittinae (oils)
Apis (resins)
Austroplebeia and
Tetragonula (resins),
Anthidium (trichomes)

[7,33,122,127–129]
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impacts individual-level immunity. Second, we review our current understanding of immunization and
immune priming in bees. Third, we discuss recent findings on the diversity and function of bee-associated
microbes that play roles in defense against parasites. We end by proposing future directions.

Parasite defense and sociality
Organisms must evolve to avoid, resist, and/or tolerate parasite infections. These outcomes are achieved by
various defense mechanisms, and different bee taxa have evolved different types and combinations of mechan-
isms (Table 1). Social behavior in bees has had large implications for the evolution of defense. Eusocial species,
for example, generally have group-level as well as individual-level defenses, while solitary species have
individual-level defenses only, although this varies with the level and evolutionary history of sociality in the
species (Table 2). Group defenses are primarily behavioral, while individual defenses are chemical and
immunological (Table 1). There are multiple hypotheses about how group-level defenses might affect selection
for individual-level defenses, and recent analyses of whole genomes and gene expression profiles provide new
insights into some of these hypotheses.
The social group hypothesis predicts that social insects have higher individual-level defenses than solitary

insects due to increased contact and genetic relatedness among individuals and thus increased disease risk [18].

Table 2. Levels of social organization in bees. Note that some levels, such as communal and quasisocial, are not referenced in the text
but are included here for completeness. Modified from reference [11].

Category Subcategory Definition

Eusocial Multiple females co-operate in nesting, exhibit reproductive division of labor, and overlapping generations
Highly eusocial Colonies are relatively large and long-lived, reproductive females (queens) are morphologically and

developmentally distinct from non-reproductive females (workers)
Primitively
eusocial

Colonies are relatively small and short-lived, and morphological differences between queens and workers are
minimal (i.e. body size) or non-existent

Presocial Females exhibit social behavior beyond sexual interactions, yet short of eusociality
Semi-social Some females lay most or all eggs. Other females are relegated to foraging, nest building, and caring for the

young
Quasisocial Some females lay eggs, but all females co-operate in brood care and share a nest.
Sub-social Females nest alone but interact with their developing larvae by progressive provisioning and may interact with

adult offspring
Facultatively social Exhibit social behavior in certain environmental contexts
Socially
polymorphic

Females from a single population can produce either social or solitary nests

Communal Individuals share a nest site with others of the same generation; no cooperative brood care

Solitary Each female is reproductive, constructs and mass-provisions her own nest, and does not interact with
offspring

Table 3. Studies on the immune system of bees other than Apis and Bombus.

Bee species Topic/immune metric Reference

Agapostemon
virescens

Encapsulation [29]

Halictus ligatus Encapsulation [29]

Xylocopa virginica Encapsulation [29]

Megachile rotundata Immune gene number [31]

Megachile rotundata Immune gene expression under fluctuating temperatures [130]

Megachile rotundata Immune gene expression under parasite challenge [131]

Osmia cornifrons Antimicrobial activity of a serine protease inhibitor [132]

Osmia bicornis Hemolymph and fat body antimicrobial activities differences between sexes and
across ages

[133]
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For example, some animals respond to crowding by up-regulating their immune responses, a process known as
density-dependent prophylaxis [19]. This is documented in lepidopteran larvae [20], but social adult termites
lack this plasticity [21]. Interestingly, more similar to the caterpillars than the termites, worker bumble bee
adults increase immune activity in group settings compared with solitary settings [22,23] and with colony age
and density [24]. Additionally, eusocial bee species (Exoneurella tridentata and Trigona carbonaria) and preso-
cial species (Exoneurella robusta and E. nigrescens) exhibit stronger individual-level defenses in the form of
cuticular antimicrobial compounds than solitary species (Amegilla asserta and A. bombiformis [25]). These
studies support the social group hypothesis because individual bees living in social groups (both within and
across species) exhibit higher individual defense mechanisms than those in isolation.
Alternatively, the relaxed selection hypothesis predicts that group-level behaviors such as allogrooming

(Table 1) reduce parasite risk and thus reduce selection for individual-level defenses [18,26,27]. This hypothesis
was inspired by documentation that termites that were inoculated with fungal spores had lower survivorship
when isolated from the group [28]. Another study compared individual immunity (encapsulation response;
Table 1) of multiple bee and non-bee insect taxa ranging in social behavior and colony size. While they found
no significant difference between the binary categories of social and non-social groups, individuals from larger
colonies had lower encapsulation responses, suggesting that insects living in large groups may not rely as
heavily on individual-level immunity [29]. Taken together, these studies suggest that group size impacts selec-
tion for individual-level defenses, but the outcome varies with species. Perhaps insects with social plasticity
invest more in individual defense plasticity, whereas eusocial insects with large colonies have lower constitutive
individual defenses due to investment in group-level behaviors (Table 1).
Analysis of immune genes may shed light on how the adoption of social behavior has impacted selection for

individual-level defenses. The honey bee was one of the first insects to have its genome sequenced and at the
time (2006), there were few other insect genomes to compare it to (Drosophila melanogaster, Anopheles
gambiae, and Manduca sexta). The honey bee had about one third the immune genes as these other insects,
which are all solitary. The authors hypothesized that the evolution of sociality reduced the selection of immune
genes and led to immune gene loss [18]. However, the rapid increase in the number of organisms with
sequenced genomes, including other Hymenoptera, has informed our interpretation of this finding. The loss of
immune genes likely predates the split between bees and ants since many ants and a solitary bee species
(Megachile rotundata) also have few immune genes [30,31]. Fewer immune genes likely result in a simpler or
reduced individual immune response and may have led to positive selection for group-level defense mechan-
isms via sociality, rather than sociality resulting in loss of immune genes [31]. Research on immunity in preso-
cial bee species (and other social Hymenopterans) would shed light on how immunity correlates with social
behavior.
If fewer immune genes result in reduced individual immune response, social bees have evolved a range of

group behaviors that appear to compensate for this loss. For example, honey bees exhibit group-level behaviors
such as propolis production and hive fever (Table 1). However, if all bees have fewer immune genes, what
defensive adaptations have other bee species acquired to compensate for this deficiency? If solitary and preso-
cial bees lack common immune genes and group-level defenses, they may rely disproportionately on exogenous
materials for protection, such as plant metabolites or other plant products. For example, resins collected by
leafcutter bees can produce a hydrophobic nest lining that protects against fungal growth [32], while other pro-
ducts such as leaf trichome secretions can defend against brood parasites, but not mold growth, in wool carder
bee nests [33]. We speculate that leaf secondary compounds may provide protection to megachilid species that
collect and line their nest with leaves, although this has not been explored yet. The reliance of these bee taxa
on exogenous materials may make them more susceptible to parasites when such materials are unavailable.
Interestingly, the Aculeates (ants, bees, and wasps) have the chemical-producing Dufour’s gland (Table 1),
which arose sometime before the loss of the immune genes and serves many different functions across these
taxa [34]. In many ground-nesting bees, Dufour’s gland secretes compounds that create a hydrophobic brood
cell lining and thus protects developing brood and pollen provisions from microbial growth [34]. The use of
exogeneous materials and Dufour’s gland may be adaptations that allow solitary and presocial bees to ward off
parasites with fewer immune genes.
Future work examining intraspecific variation may inform how social behavior affects the immune response,

such as studying differences between castes of the same species and individuals at different life stages. For
example, male bumble bees are more ‘solitary’ than female queens and workers. Males typically leave the nest
immediately to seek mates, like many adult solitary insects. Comparing male and female bumble bees may shed
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light on the need for immune defense in social and solitary contexts within a single species. We might expect
males to have lower immune function than females since males are not engaged in as much social contact in
the nest. Additionally, queen bees undergo a solitary portion (mating, over-wintering, and foraging for brood
provisions) and a social portion (maternal care of adult offspring) of their life cycle. Rehan et al. [35] compared
brain transcriptomes of females of a sub-social bee species, Ceratina calcarata, which generally follows this life
cycle pattern [35]. They found that some immune genes (hymenoptaecin) were up-regulated in spring, ‘solitary’
mothers, while others (apidaecin) were up-regulated in autumn, ‘social’ mothers. While C. calcarata does not
have colonies as large or dense as eusocial species, it still exhibits parent–offspring and offspring–offspring
interactions, making it an excellent study organism to further investigate the evolution of social behavior and
immunity. Performing similar studies on immune function in bees across life stages would improve our under-
standing of how the immune function depends on social interactions and parasite risk. This could help us
understand when female bees are most susceptible to stressors, which can improve strategies for mitigating
population declines.

Immunization and transgenerational immune priming
Immunization is the protection of the host against a parasite upon secondary exposure via two mechanisms: a
specific immune memory (i.e. immune priming) or nonspecific immune up-regulation (Table 1). Social insects
may be more dependent on immunization than solitary insects because they are more prone to repeated expos-
ure to microbial parasites established in a colony [36]. There is evidence for immunization in numerous social
insects including bumble bees [36,37]. In bees, immunization may occur through allogrooming of nestmates.
Honey bees increase allogrooming behaviors when nestmates’ immune systems are challenged [38], which
removes parasites but may also prime the groomers against potential infection. However, close contact via allo-
grooming could also increase parasite transmission.
Transgenerational immune priming (TGIP; Table 1) is thought to be particularly beneficial for social or mul-

tivoltine insects (those that produce two or more broods per season), where offspring are reared in the same
environments as their mothers and likely face similar pressure from parasites [39,40]. For example, bumble bee
queens directly secreted antibacterial factors onto their eggs after a non-pathogenic immune challenge [41].
Additionally, healthy bumble bee workers born from an immune-challenged queen expressed immune genes
nearly identical to workers that were themselves challenged [42]. In honey bees, workers from an immune-
challenged mother had lower mortality and three times more differentiated immune cells than workers from a
naïve mother when challenged with a heat-killed bacteria (Paenibacillus larvae [43]). TGIP should be tested in
non-eusocial, multivoltine bee species (such as some carpenter bees) to better understand the factors that select
for this trait.
The ecological costs of TGIP are largely unexplored in bees [44]. Caterpillar (M. sexta) offspring from a

primed mother, that were not themselves challenged, grew faster but laid fewer eggs than offspring from a
naïve mother [45], highlighting the potential costs of TGIP in fluctuating environments. The movement of
managed honey bees has introduced parasites to native bees [46,47]. Thus, it is crucial to consider immuniza-
tion and TGIP to predict how native bee populations will fare in the face of new and variable parasite
exposure.

Immunity is compromised by low-quality diets and
pesticides
Diet
Stress compromises many physiological processes that can exacerbate infections. The immune system is costly
and thus sensitive to stressors such as nutrient limitation. In adult bumble bees, an immune challenge increased
sucrose consumption [48] and mortality when compensatory consumption was not allowed [49]. Worker
bumble bees which had no access to pollen had up-regulated fewer and less specific immune genes when
infected with a gut parasite (Crithidia sp.) than bees fed pollen [50] , but food limitation did not affect the
general encapsulation response in workers [51].
While access to enough food is essential for bees to mount an immune response [50], diet composition can

also impact immune activity. In honey bees, immunocompetence and glucose oxidase activity (which disinfect
the brood and hive environment) were improved with polyfloral compared with monofloral diets, but were not
affected by protein content [52]. Similarly, another study found that protein content in different types of pollen
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did not impact the immune response in adult bumble bees [53]. These findings are somewhat surprising
because dietary protein increased immune activity in Spodoptera littoralis caterpillars [54]. The role of dietary
protein may be different for immune function in larval and adult insects or in different insect taxa. Most
research on bees is conducted with adults, whereas Lepidoptera immunity research often focuses on larvae; it
would be helpful if research is carried on the immune response across different life stages, and compare it with
other insect systems such as Drosophila where immunological research has been conducted on both larval and
adult stages.
While monofloral diets and starvation may exacerbate infections through immune deficiency, other diets can

reduce infections and increase immune activity. For example, honey bee immune gene expression was bolstered
in bees fed certain monofloral pollens such as Erica and Rubus [55] and p-coumaric acid, a structural com-
pound in pollen and honey [56]. In other cases, certain diets reduced infections. For example, Crithidia infec-
tions were reduced in bumble bees fed secondary compounds found in nectar [57–59], but whether this is due
to direct inhibition or the host immune system is unclear. Monofloral pollens from sunflowers (Helianthus
annuus) and goldenrod (Solidago spp.) also reduced Crithidia infection in bumble bees [60,61]. However,
extracts from sunflower and other pollens increased parasite growth in vitro, suggesting that the host mediates
parasite inhibition [62]. Additionally, Nosema (an intracellular spore-forming fungus) infection was reduced in
honey bees fed sunflower honey or pollen [60,63], and Rubus pollen increased survivorship of honey bees
infected with Nosema [55]. Interestingly, honey bees preferentially fed on sunflower honey and their preference
for it increased with Nosema infection intensity [63]. These studies highlight the important role that diet
quality plays in parasite resistance in bees.
We currently have little understanding of how dietary components such as protein and secondary chemistry

affect parasite resistance in solitary bee species. Diet does, however, impact development and brood parasitism
in the solitary bees that have been studied thus far. Several solitary bee species are Asteraceae specialists,
despite the low protein content of the pollen. One explanation for this apparent paradox may be protection
against brood parasites. Osmia that specialize on Asteraceae plants (Osmia (Helicosmia) coloradensis, Osmia
(Cephalosmia) montana, and Osmia (Cephalosmia) subaustralis) experience less brood parasitism by wasps
than Fabaceae-specialists (Osmia (Hapsidosmia) iridis) or generalists (Osmia (Melanosmia) tristella and Osmia
(Melanosmia) tersula), potentially because the bees have acquired some adaptation to develop on this low-
protein diet, while the wasps have not [64]. Diet composition and quality are important for bee growth, devel-
opment, and immunity, and further studies on the impact of diet on solitary bee parasite infection in both
adults and larvae are needed.

Pesticides
Chemical pesticides (insecticides, herbicides, and fungicides) have lethal, sub-lethal, and indirect negative
effects (e.g., reducing available forage) on bees. One sub-lethal impact is via immunosuppression, which
can lead to increased mortality when combined with parasite exposure or other stress. Bees are exposed to
pesticides through pollen and nectar, as well as through the soil for ground-nesting bees [65]. Recent
reviews have explored physiological mechanisms of immunosuppression by pesticides in bees, such as redu-
cing hemocyte function [66], and the positive correlations between pesticides and viral occurrence in
honey bees [67].
These reviews highlight links between pesticide exposure and susceptibility to parasites; however, relatively

few studies have linked pesticide exposure directly to immune function. Work on honey bees has found that
neonicotinoids and certain fungicides reduce immune and detoxification gene expression, with the most well-
documented effects on viruses and Nosema [68–70]. Exposure to a common neonicotinoid in bumble bees
reduced constitutive levels of the immune enzyme phenoloxidase, maintenance of antimicrobial activity in
the hemolymph after an immune challenge, and survivorship, when combined with an immune challenge
[71]. Additionally, field observations have identified trends between pesticide-treated landscapes, parasites,
and bee populations. For example, among 17 landscape variables, fungicide use had the third highest correl-
ation with Nosema prevalence in bumble bees (the two factors with higher correlations were the amount of
area developed and latitude [72]). A few experimental studies have identified effects of pesticides on solitary
bees [65,73,74], but no studies have yet examined the effects of pesticides on solitary bee immune systems.
Impacts of pesticides on the solitary bee immune function and parasite loads are an open area for future
research.
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Host-specific microbes can protect against parasites and
modulate immunity
Host-associated microbes play a large role in organism fitness by mediating interactions with other individuals,
parasites, food, and the environment [75]. Bees are no exception; studies on social species have found residential
microbes — bacteria being the most well studied — to aid in digestion [76,77], immune system regulation [78,79],
and detoxification [80,81]. Associations between bee hosts and beneficial microbes vary with life-history strategies
such as sociality. Recent reviews have covered the microbiomes of insects [82] and specifically bees [83–85]. Here,
we synthesize the studies that shed new light on how microbes mediate bee–parasite interactions.
Many factors impact the bacterial communities found in bee guts and nests, including social interactions [86],

diet and forage composition [87–89], urbanization [90], and pesticide exposure [91]. However, causal patterns are
still difficult to identify due to high within-species and within-colony variation in these communities, which may
be due to transient taxa. For example, there are changes in the gut microbiome between bumble bee larval and
adult life stages [92] and before and after hibernation for queens [90]. Similarly, the gut microbiome varies with
honey bee castes [93] and workers’ behavioral tasks [94]. However, supplemental food and the immune challenge
had no effect on wild bumble bee gut microbiomes [95]. The rearing environment has variable effects on bumble
bee gut microbes; one study found that indoor-reared and wild bumble bees had similar microbial communities
[96], while two others found that the transition from indoor to outdoor environments altered gut microbial
communities [97,98]. Lastly, some parasites can alter the gut microbiome; the presence of American foulbrood
(P. larvae) altered the honey bee adult gut microbiome [99], but experimental infection with Nosema did not
[100]. This difference may be due to different life histories of the parasites and how they interact with host cells;
P. larvae is passively transmitted in adult honey bees (and only infects larvae) and may, therefore, interact directly
with gut bacteria [101], while Nosema spores invade adult gut epithelial cells [102].
Social interactions transmit microbes between bee hosts, and strongly influence short- and long-term gut

microbiome associations. Early social contact dictates succession of the gut microbiome [86] and has facilitated
long-term establishment of certain microbial taxa in eusocial corbiculate bee hosts (a monophyletic group
including bumble bees, honey bees, and stingless bees that diverged from other bees 80 MYA [103]), resulting
in relatively simple and highly specific gut microbial communities in those taxa [104,105]. Recent studies with
bumble and honey bees have identified correlations between the gut microbiome and parasite incidence
(Table 4). For example, in honey bees, disrupting the gut microbiome via antibiotics increased mortality when
infected with Nosema [100]. Interestingly, gut bacteria in the genus Gilliamella are positively associated with
Nosema infection in honey bees [106], but studies have found either positive [107] or negative [108] associa-
tions with Crithidia infection in bumble bees.
A handful of studies have demonstrated a causal relationship between microbiome composition and parasite

resistance [107,109] (Table 4). For example, bumble bees reared in a sterile environment that were inoculated
with feces had lower parasite loads after one week compared with those without a microbiome (via being main-
tained in isolation or by treatment with antibiotics [107]). Further studies have identified potentially causal
links between the bee gut microbiome and parasites by studying the effects of the microbiome on immune
response in honey bees. Honey bees with an unmanipulated gut microbial community up-regulated the expres-
sion of the antimicrobial peptides (AMPs) apidaecin and hymenoptaecin compared with bees lacking a gut
microbiome, showing that gut microbes can activate the host immune system. However, cultured strains of five
gut bacteria were more resistant to honey bee AMPs than Escherichia coli, suggesting the gut bacteria have
evolved to tolerate the host immune system [78]. Additionally, the honey bee gut bacterium Frischella perrara
induced melanization, a general immune response [110], and up-regulated expression of host immune genes
(including pattern-recognition receptors, AMPs, and transporter genes [79]). The role of bacteria in activating,
modulating, and/or tolerating the bee immune system is an area of active inquiry that merits further investiga-
tion to distinguish causal links between the gut microbiome and parasite infection.
While the corbiculate eusocial bees host a relatively small, highly specific group of gut bacteria, other bee

species host more variable and less specific microbes that are acquired primarily from the environment [111]
(Table 5). Because of this, these gut microbes are less coevolved with their hosts than corbiculate bee microbes.
Interestingly, social behavior itself is not responsible for host specificity, as eusocial sweat bees (Halictus ligatus)
and multiple species of ants do not host highly specific microbiomes [104,112,113].
Bees exhibit a gradient of specificity and evolutionary relationships with their gut microbes; some solitary

bees may not harbor residential bacteria at all (their microbiomes may be purely transient [114]) or harbor
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bacteria that provide few or no functions that are important for host health. The consequences of few residen-
tial bacteria for host health are not yet explored in bees. We propose two hypotheses about the role of gut
microbes in bee–parasite interactions: (1) bee reliance on microbes for parasite resistance is dependent on spe-
cificity and evolutionary history. Microbes that are not as highly coevolved with their host play less of a role in
modulating the host immune system than microbes that are coevolved with and under selection to protect their
host. This gradient in host-microbe specificity across bee taxa should result in differences in the role of
microbes in host immunity and parasite resistance. (2) Bee species that do not have a highly specific micro-
biome may be more vulnerable to environmental change, opportunistic pathogens, and stressors than species
with a highly specific and protective microbiome. There are thousands of non-corbiculate bee species and we

Table 4. Recent studies on the relationship between the microbiome and parasites in Apis and Bombus bees.

Parasite Relationship between microbiome and infection Reference

Host: Apis mellifera

Nosema ceranae Experimental Nosema infection positively correlated with Gilliamella gut bacteria
and weakly associated with gut microbiome community structure

[106]

Nosema ceranae Addition of Parasaccharibacter apium bacterium (found in food stores, larvae,
queen, worker hypophorangeal glands, and worker jelly) to pollen reduced
Nosema spore count

[134]

Nosema ceranae Addition of Bifidobacterium and Lactobacillus bacteria to sugar syrup reduced
Nosema spore count

[135]

Nosema ceranae Bees treated with antibiotics had higher Nosema spore counts than bees with
unmanipulated gut microbiomes

[100]

Nosema ceranae Nosema infection negatively correlated with Snodgrassella alvi and positively
correlated with Frischella perrara gut bacteria

[136]

Colony collapse Gut bacterial community composition correlated with the incidence of colony
collapse disorder

[137]

Paenibacillus larvae Novel lactic acid bacteria inhibited P. larvae in honey bee larvae [138]

Melissococcus plutonius Lactic acid bacteria inhibited M. plutonius in vitro and in vivo, increasing
survivorship of honey bee larvae when exposed to the parasite

[139]

Host: Bombus

Crithidia and Nosema No relationship between parasite prevalence and gut microbial diversity, but the
prevalence of Nosema was negatively correlated with the relative abundance of
Snodgrassella bacteria

[90]

Crithidia Bees treated with antibiotics, no gut microbiome, or Gammaproteobacteria had
higher Crithidia loads than bees with unmanipulated microbiomes; Crithidia
negatively correlated with Betaproteobacteria and Gammaproteobacteria
(although weaker in the latter) in wild-caught bees

[107]

Crithidia Gut microbiota instead of host genotype determine parasite infection levels [140]

Crithidia Crithidia infection negatively correlated with Gilliamella and core bacterial taxa in
wild-caught bees

[108]

Crithidia Crithidia infection was higher in individuals with higher gut microbial community
diversity. Host microbial community structure and diversity do not change from
before and after parasite infection.

[141]

Crithidia, Paenibacillus larvae,
Melissococcus plutonius, and Ascosphaera
apis

Bacterial strains from bumble bee guts inhibited bumble bee and honey bee
parasites in vitro

[142]

Crithidia Crithidia infection negatively associated with high gut microbiome diversity and
abundance, and the presence of Apibacter, Lactobacillus, and Gilliamella spp.
Commercial and wild-caught bees had different gut microbiomes and wild bees
were more susceptible to infection than commercially reared bees.

[109]

Crithidia Lactobacillus bombicola gut bacteria had a higher optimal growth temperature
than Crithidia and inhibited growth at high temperatures

[143]

Crithidia Lactobacillus bombicola gut bacteria inhibited Crithidia by decreasing gut pH [144]

© 2019 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology8

Emerging Topics in Life Sciences (2019)
https://doi.org/10.1042/ETLS20190069

D
ow

nloaded from
 https://portlandpress.com

/em
ergtoplifesci/article-pdf/doi/10.1042/ETLS20190069/865054/etls-2019-0069c.pdf by U

K, Shou H
w

a Liu on 13 January 2020



Table 5. Studies on microbes associated with bees other than Apis and Bombus. When several species in the same study have the same
social level and family, labels are provided after the final species in that group. Part 1 of 3

Host species [sociality] (family) Topic Reference

Ceratina australensis [sub-social]
(Apidae)

Nest pollen species richness and community composition were not correlated with
richness and community composition of bacterial species.

[145]

Ceratina australensis [sub-social]
(Apidae)

Nest pollen species composition was strongly correlated with fungal community
composition in nests.

[146]

Megachile rotundata [solitary]
(Megachilidae)

Leaf and flower forage affect the leafcutter bee nest bacterial and fungal communities,
including bee and plant pathogens.

[147]

Megachile rotundata [solitary]
(Megachilidae)

Chalkbrood fungus inhibits other fungi, and may affect and even facilitate bacterial
communities in the larval gut.

[148]

Megachile rotundata [solitary]
(Megachilidae)

The diversity of microbes in the larval gut and frass was lower than those in the crop,
pollen from the abdomen, and nest provisions. Larvae infected with chalkbrood had
higher abundance (in weight) of bacteria and filamentous fungi, but not yeasts, than
healthy larvae.

[149]

Megachile rotundata [solitary]
(Megachilidae)

Larvae fed pollen with natural microbiota had a higher incidence of chalkbrood
compared with larvae fed microbe-free pollen.

[150]

Megachile rotundata [solitary]
(Megachilidae)

Larval guts had inconsistent and small populations of bacteria. [151]

Megachile rotundata [solitary]
(Megachilidae)

Dominant fungal and bacterial taxa from adult bees, larvae, provisions, and nests were
characterized.

[152]

Megalopta [polymorphic] (Halictidae)
Ceratina [sub-social] (Apidae)

Ceratina adults and pollen provisions have some of the same microbes; Megalopta
adults have more diverse microbial communities with little overlap between adults and
pollen provisions.

[153]

Hesperapis cockerelli [solitary]
(Dasypodaidae),
Rediviva saetigera [solitary]
(Melittidae),
Calliopsis subalpinus [solitary]
(Andrenidae),
Halictus patellatus,
Agapostemon virescens [solitary]
(Halictidae),
Colletes inaequalis,
Caupolicana yarrowi [solitary]
(Colletidae),
Megachile odontostoma,
Hoplitis biscutellae [solitary]
(Megachilidae),
Diadasia opuntia,
Xylocopa californica [solitary] (Apidae)

Gut microbes in eusocial corbiculate bees are less diverse and more consistent than in
solitary, non-corbiculate bee species.

[104]

Lithurgus gibbosus,
L. littoralis,
Megachile brevis,
M. parallela,
M. policaris,
Osmia chalybea,
O. subfasciata
[solitary] (Megachilidae)

Lactobacillus micheneri was found in all adult and larval guts, pollen provisions, and
host flowers, suggesting that flowers are transmission hubs of these bacteria between
bees.

[154]

Nomia melanderi
[solitary](Halictidae),
Megachile rotundata
[solitary] (Megachilidae)

Yeast and bacteria were common and are pioneer colonizers during microbial
succession in brood cells for both species.

[155]

Osmia cornuta [solitary] (Megachilidae) Old pollen provisions had higher bacterial diversity than fresh ones, and adult gut
samples had higher diversity than larval samples.

[156]

Continued
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Table 5. Studies on microbes associated with bees other than Apis and Bombus. When several species in the same study have the same
social level and family, labels are provided after the final species in that group. Part 2 of 3

Host species [sociality] (family) Topic Reference

Osmia cornuta [solitary]
(Megachilidae),
Andrena vaga [solitary] (Andrenidae)

Crithidia bombi and novel viruses detected in O. cornuta. [157]

Osmia bicornis,
O. caerulescens,
Megachile rotundata,
M. versicolor [solitary] (Megachilidae)

Microbe communities were similar within species, and not affected by landscape. Within
species, larvae and stored pollen microbial communities were consistent, and microbes
in pollen provisions shifted as larvae grew.

[158]

Osmia bicornis [solitary]
(Megachilidae)

Nest and pupal microbes were highly diverse and contained potential parasites. [159]

Osmia ribifloris [solitary] (Megachilidae) Bees fed sterile pollen experienced reduced growth rates, mass, and survivorship
compared with those fed unsterilized pollen.

[160]

Osmia bicornis [solitary]
(Megachilidae)

High intraspecific variation in the gut microbiome structure compared with Bombus and
Apis. Community differences were observed between years and between larvae and
adult life stages.

[161]

Andrena cineraria, Andrena fulva,
Andrena haemorrhoa [solitary]
(Andrenidae), Osmia bicornis,
Osmia cornuta [solitary] (Megachilidae)

Three novel parasites and yeasts of the genus Metschnikowia were detected in wild
bees.

[162]

Diadasina distincta,
Ptilotrix plumata [solitary] (Apidae)

New species of yeasts were identified in pollen provisions, larvae, pupae, and adults,
which likely contribute to the fermentation of pollen provisions.

[163]

Scaptotrigona depilis [eusocial]
(Apidae)

Larvae require the consumption of Zygosaccharomyces spp. fungus in brood provisions
to properly develop.

[164]

Megalopta centralis,
M. genalis [polymorphic] (Halictidae)

Host species and developmental stage, but not host social structure, affected the
microbiome in socially polymorphic bees.

[165]

Halictus maculatus [eusocial],
H. scabiosae [eusocial],
H. fulvipes [eusocial],
H. tumulorum [polymorphic],
H. rubicundus [polymorphic],
H. pollinosus [unknown],
Lasioglossum laticeps [eusocial],
L. malachurum [eusocial],
L. nigripes [eusocial],
L. marginatum [eusocial],
L. morio [eusocial],
L. fulvicorne [eusocial],
L. pauxillum [eusocial],
L. interruptum [eusocial],
L. albipes [polymorphic],
L. calceatum [polymorphic],
L. laevigatum [solitary],
L. zonulum [solitary],
L. leucozonium [solitary],
L. villosulum [solitary],
L. limbellum [solitary],
L. mediterranium [unknown]
(Halictidae)

Social behavior did not affect bacterial communities, except for Sodalis bacteria, which
was identified more commonly in solitary species and solitary polymorphs.

[166]

Tetragonula spp.,
Austroplebeia sp. [eusocial] (Apidae)

A new clade of Lactobacillus bacteria was found in guts of three species. [167]

Centris atripes
Anthophora abrupta [solitary](Apidae),
Paratrigona subnuda, Partamona
helleri,

Core bacterial taxa are found in the corbiculate bee clade including Apis, Bombus, and
the stingless bees — all eusocial species listed here. These taxa are consistent within
this host group and are absent in solitary bee outgroups.

[103]

Continued
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have only investigated the microbiomes associated with a handful of them (Table 5). Characterizing the com-
munities, functions, and host dependence of microbes associated with non-corbiculate bees is an open area for
future research.
Solitary bees are susceptible to parasites transmitted from social hosts via shared flowers [115], and these

host transitions could become more frequent as non-native pollinators are transported long distances for agri-
cultural pollination [116]. It is critical to understand how the solitary bee microbiome and health are impacted
by interactions with non-native pollinator and parasite communities. Future work should prioritize identifying
links between parasite prevalence and microbial communities for more bee species, particularly non-social
species.

Conclusions and future directions
Bees are susceptible to a diverse group of parasites and have evolved multiple defense mechanisms, including
innate immunity, immune priming, feeding on antimicrobial diets or collecting antimicrobial nest materials,
and reliance on beneficial microbes. There are multiple avenues of future research in these topics, particularly
characterizing differences between the relatively well-studied social bees and understudied presocial and solitary
bees. We highlight four topics to address in future research:

(1) Intraspecific variation in immunity in varying ecological contexts.

We report that social behavior influences investment in individual immunity, but the level of investment likely
depends on colony size and degree of sociality. Characterizing investment in immunity in facultatively social
species such as Megalopta, Halictus, and Euglossa would shed light on how social interactions impact parasite
risk and investment in defense. We also note that bees that do not rely on group-level defense mechanisms
may rely more on plant products for protection against parasites.

(2) TGIP in multivoltine and presocial bee species.

TGIP is considered to be an important aspect of the social insect immune system, but its role in multivoltine
and presocial species has not yet been explored. We report that multivoltine and presocial bee species also rely
on TGIP, which may make those taxa more resilient to parasites than species that do not exhibit this adapta-
tion. However, identifying the factors that influence immune plasticity and costs associated with it is critical to
understand how their populations will respond to fluctuating parasite environments.

(3) Effects of low-quality forage and pesticides in presocial and solitary bee health.

Low-quality diets, starvation, and pesticide exposure have major consequences for bee susceptibility to parasites,
but research linking this to immune function is lacking for most species. The diversity of life-history strategies
and defense mechanisms in bees suggest that taxa should respond to these stressors differently. Understanding

Table 5. Studies on microbes associated with bees other than Apis and Bombus. When several species in the same study have the same
social level and family, labels are provided after the final species in that group. Part 3 of 3

Host species [sociality] (family) Topic Reference

Trigona spp.,
Plebeia droryana,
Heterotrigona itama,
Sundatrigona moorei, Geniotrigona
thoracica,
Tetragonula spp. [eusocial] (Apidae)

Melipona quadrifasciata [eusocial]
(Apidae)

Novel parasiteic viruses were identified associated with stingless bees. [168]

Centris pallida and Anthophora sp.
[solitary](Apidae)

Bacillus spp. bacteria were found in brood samples of both species. [169]

Centris flavofasciata, Xylocopa
californica [solitary](Apidae),
Crawfordapis luctuosa [solitary]
(Colletidae)

Bacillus spp. bacteria were found in samples of all three solitary species, which include
brood provisions from C. flavofasciata and X. californica and the gut from C. luctosa.

[170]
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which taxa may be most susceptible to environmental stressors — which may be solitary species — is critical to
inform prioritization of conservation efforts, policy on pesticide use, and plantings that benefit a diversity of
pollinators.

(4) The role of environmental factors on microbes associated with presocial and solitary bees and the role of
microbes in parasite resistance.

Recent studies have identified correlations between gut microbial communities and parasites in some bee taxa,
and that immune systems are activated by and coevolved with certain gut microbes. Solitary and presocial
species may not have a highly specific microbiome, which may make their responses to stressors less predictable
or consistent. Identifying links between microbes and host health in presocial and solitary bee species will
inform conservation strategies for these taxa.
Environmental changes such as urbanization, landscape fragmentation and simplification, pesticide use, inva-

sive species, and climate change impact interactions between plants, pollinators, and microbes. Current research
approaches to the ‘pollination crisis’ are primarily through the lens of social model bee species. Social behavior
impacts bee immune systems and microbiomes — two important traits that determine host susceptibility to
parasites and resilience in the face of stress — and so insights from social species may not apply to all bee polli-
nators. Bees are critical to ecosystem function and agricultural pollination, and thus it is imperative that we
continue to broaden our understanding of bee–parasite interactions to protect bee populations and conserve
biodiversity.

Summary
• Bees are susceptible to a diverse group of parasites and have evolved diverse defensive

adaptations, including behavioral, immunological, and chemical mechanisms. Many bee
species, particularly the corbiculate bees, may also rely on bacterial symbionts for parasite
defense.

• Social behavior impacts selection for defensive traits such as immune systems and micro-
biomes, and bee species with varying levels of sociality and colony sizes rely on different
defensive strategies.

• Low-quality diets and pesticides can render bees more susceptible to parasites and exacer-
bate infections by impairing the immune system and altering the gut microbiome.

• Most research has been on eusocial bee species and relatively little is known about immunity
and the role of beneficial microbes in non-eusocial bees. Future research should focus on
defense strategies in non-eusocial bee species and the effects of environmental factors such
as low-quality forage and pesticides on their susceptibility to parasites.
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