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Simple Summary: Nectar compounds have the potential to affect microbial communities and 
pollinator immunity. Here, we investigated how the almond compound, amygdalin, influences the 
microbial community of the western honeybee. Using RNA sequencing technology to count microbial 
reads and bee gene transcripts, we show relatively no large change of bacterial counts, fungal counts 
or bee transcripts due to amygdalin treatment at the colony level. Larger fluctuations, perhaps due to 
amygdalin, were observed for pathogenic viruses and the pathogen Lotmaria passim; however, these 
changes could have been seasonal. Overall, amygdalin consumption at field-relevant, colony-levels 
may not have a large impact on bee symbionts or immune gene expression. 

Abstract: Amygdalin, a cyanogenic glycoside, is found in the nectar and pollen of almond trees, as 
well as in a variety of other crops, such as cherries, nectarines, apples and others. It is inevitable that 
western honeybees (Apis mellifera) consistently consume amygdalin during almond pollination season 
because almond crops are almost exclusively pollinated by honeybees. This study tests the effects of a 
field-relevant concentration of amygdalin on honeybee microbes and the activities of key honeybee 
genes. We executed a two-month field trial providing sucrose solutions with or without amygdalin ad 
libitum to free-flying honeybee colonies. We collected adult worker bees at four time points and used 
RNA sequencing technology and our HoloBee database to assess global changes in microbes and 
honeybee transcripts. Our hypothesis was that amygdalin will negatively affect bee microbes and 
possibly immune gene regulation. Using a log2 fold-change cutoff at two and intraday comparisons, 
we show no large change of bacterial counts, fungal counts or key bee immune gene transcripts, due 
to amygdalin treatment in relation to the control. However, relatively large titer decreases in the 
amygdalin treatment relative to the control were found for several viruses. Chronic bee paralysis virus 
levels had a sharp decrease (−14.4) with titers then remaining less than the control, Black queen cell 
virus titers were lower at three time points (<−2) and Deformed wing virus titers were lower at two 
time points (<−6) in amygdalin-fed compared to sucrose-fed colonies. Titers of Lotmaria passim were 
lower in the treatment group at three of the four dates (<−4). In contrast, Sacbrood virus had two dates 
with relative increases in its titers (>2). Overall, viral titers appeared to fluctuate more so than bacteria, 
as observed by highly inconstant patterns between treatment and control and throughout the season. 
Our results suggest that amygdalin consumption may reduce several honeybee viruses without 
affecting other microbes or colony-level expression of immune genes. 
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1. Introduction 

Given the value of pollinators in agriculture coupled with declining populations, due to a variety 
of stressors, including pathogens, it is important to understand how natural plant products found in 
nectar impact pollinator health and immunity [1–3]. Model systems ideal for studying these 
relationships are the western honeybee (Apis mellifera) and bumblebee species (Bombus terrestris and 
B. impatiens). Pathogens that affect bees have been correlated with honeybee colony loss [4]. Key 
agents include Deformed wing virus (DWV; a single-stranded RNA virus), Nosema ceranae (an 
intracellularly reproducing fungal spore-producing parasite), and Lotmaria passim (eukaryotic 
trypanosomatid) [5,6]. Conversely, numerous microorganisms benefit honeybee health and 
immunity, such as bacterial mutualists found in the intestine, including Snodgrassella alvi, Gilliamella 
apicola, and Lactobacillus spp. [7]. The role of Frischella perrara is less clear [8]. 

Numerous studies have shown how natural plant products, specifically phytochemicals, can 
reduce pathogen loads in bees (reviewed [9]). For example, thymol (an essential oil from thyme 
plants, including in the nectar [10]) reduced Nosema ceranae spore loads and increased honeybee 
longevity relative to control worker bees [11]. Modeling data from feeding assays of phytochemicals 
during nosemosis showed that the interaction between concentration and compound was responsible 
for reduced spore counts at the end of the experiment [12]. In bumblebees, multiple nectar 
phytochemicals also reduced infection intensity by the gut pathogen Crithidia bombi [3,13]. Bees may 
forage on specific phytochemicals as a means of reducing colony pathogen loads. The notion of 
reducing pathogens by collecting plant resins or specific nectars has been considered a form of “social 
medication” [14]. While self-medication for bees is defined by the collection of remedies like 
phytochemicals to support individual health, social medication describes the collection of such 
remedies for the benefit of the colony [14]. As one example, honeybees will increase resin collection 
when the colony is infected with A. apis [15]. Additionally, at the colony level, collected plant resins 
reduce honeybee immune gene expression, which suggests that plant-derived compounds may 
reduce individual immunity costs [16,17]. Other potential benefits of phytochemicals may include 
improved memory and learning [18]. 

Despite these potential benefits, there may be costs and tradeoffs to collecting nectar with 
phytochemicals, especially when there are few nectar choices available, and those costs may be 
concentration- and species-dependent [19,20]. Costs may include both outright death [21], as well as 
sublethal ones. One example of a potential sublethal effect from a natural product is from thymol 
ingestion, where body mass was significantly reduced at non-lethal concentrations [22]. Despite an 
energetic cost, the collection of compounds may nonetheless be beneficial for the overall health of the 
colony [23]. In monoculture agricultural contexts, the consumption of specific nectar or pollen 
phytochemicals may be the only option for insects during specific times of the year, and it is 
important to know how this consumption impacts pollinator health and immunity. 

The almond crop is worth billions of dollars per annum in the USA and Australia [24], and this 
commercial enterprise uses western honeybees as a major pollinator. Almond orchards (Prunus 
dulcis) are pollinated early in the year. Phytochemicals in almond nectar are collected by honeybees 
and consumed during the pollination season, potentially even if they are detrimental. Although it is 
possible that bees also forage on other plants during almond bloom, bees appear to have fidelity to 
forage on specific trees in orchards if the plant provides enough nutrition (reviewed in [25]). 
However, in another study, non-almond pollen was identified on bees foraging in almond orchards, 
presumably because bees were foraging on other plant species [25]. Thus, it is possible that bees have 
foraging options during almond bloom, but because almond is the major blooming floral resource 
and bees have fidelity towards crop trees, there is likely little potential for “social medication” or 
“social detoxification” (the latter by diluting toxic compounds through other foraging [26]). 

Almond nectar and pollen contain amygdalin, a cyanogenic glycoside [27,28]. When amygdalin 
is broken down in animals, it forms cyanide, which is toxic to animals. However, despite its potential 
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toxicity, honeybees can tolerate relatively high doses of amygdalin, as shown in survival assays 
where bees fed three log-scale concentrations of amygdalin, up to 100 ppm (ad libitum), had similar 
survival to the control for up to 22 days [29]. In another study using unnaturally high concentrations 
of amygdalin (up to 10 mM), the ingestion of amygdalin led to malaise signs, such as increased time 
spent upside down, as well as more abdomen dragging, but presumably, this was not lethal [30]. In 
a study using the bumblebee B. impatiens infected with the pathogen Crithidia bombi, amygdalin did 
not reduce pathogen titers nor increase mortality [3]. Natural concentrations of amygdalin average 
4.9–6.7 ppm in P. dulcis nectar [27]. It has also been observed that bees do not avoid amygdalin at 
natural concentrations [31]. 

Since honeybees collect nectar and pollen containing amygdalin in almond orchards with likely 
only a few other major sources of nectar for dilution, we measured the effects of season-long 
amygdalin consumption on honeybee microbiota and immune gene expression. We hypothesized 
that season-long amygdalin ingestion would reduce honeybee microbial loads, which include 
parasites, viruses, mutualists and commensals. Although amygdalin’s derivative is considered toxic, 
animals can tolerate it, but we also hypothesized that microbes are less tolerant. Additionally, the 
toxin could harm host cells, which have intracellular pathogens. Other subtler host-pathogen-natural 
product interactions may also be at play. Understanding the effects of amygdalin on the bee 
microbiome and pathobiome will provide insight into other efforts for improving honeybee health 
using natural products [32], as well as our general understanding of mechanisms affecting pollinator 
health during commercial operations. 

2. Materials and Methods 

2.1. Experimental Setup and Compound Feeding 

Twelve free-flying A. mellifera ligustica US domestic hybrid colonies located in a bee yard at the 
USDA in Beltsville, Maryland, were used. Colonies had been established from packages of honeybees 
delivered from a commercial breeder in Georgia, USA. We placed colonies on concrete blocks in a 
circular array with 2 m distance between colonies. In April 2013, we randomly assigned twelve 
healthy and similarly sized colonies into treatment and control groups, and then fed all colonies with 
sterile 50% sucrose-distilled water solutions placed in clean Mason jars with lids that had pin-sized 
punctured holes (Boardman hive-front feeders). The treatment group received this sucrose solution 
supplemented with 10 ppm (10 mg/L) dissolved amygdalin (Sigma, St. Louis, USA; CAS 29883-15-6). 
The control colonies received sucrose water. The amygdalin concentration was chosen to be slightly 
higher than in P. dulcis nectar (ca. 4.9–6.7 ppm [27]) under the assumption that these field colonies 
were also taking advantage of an active local nectar flow that might dilute amygdalin consumption. 
During this study, the mid-Atlantic region of the US is in full bloom [33]. Colonies were fed ad libitum 
throughout the experiment. The USDA-ARS apiary in Beltsville, Maryland, is not adjacent to any 
almond orchards. The experiment lasted approximately two months. 

2.2. RNA Isolation and Sequencing 

After two weeks of treatment and approximately every 14-18 days thereafter, approximately 80 
adult bees were collected from each colony using a hand vacuum [32] to remove bees from the surface 
of populated brood frames. Four collection time points were made during the experiment. Total RNA 
was extracted from a pool of 50 bees per colony per time point using homemade RNA isolation buffer 
and phenol-chloroform, as described in the COLOSS BEEBOOK [34]. 

Total RNA was first quantified using a Nanodrop ND-8000 (ThermoFisher Scientific, Inc. 
Wilmington, DE, USA) with 2 μL of each sample (Supplementary Information). Additionally, RNA 
integrity was confirmed using a Bioanalyzer instrument. For each time point, we produced twelve 
total RNA extracts, one from each colony. Before RNA sequencing, we pooled the six total RNA 
samples from treated colonies at an equimolar concentration to produce one sample per time point 
per treatment for RNA sequencing. We did this separately for the six treatment colonies and the six 
control colonies. Library preparation and sequencing were done at the University of Maryland 
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(UMD) Institute of Genome Sciences (IGS), Baltimore, Maryland. Library preparation was strand-
unspecific and not a reduced representation. We produced 100 bp, paired-end data in an Illumina 
Hi-Seq 2000 machine [35]. The reads were received demultiplexed and trimmed of the adaptor. 

2.3. Identification of Microbes 

We ran the paired FASTQ files received from UMD in fastp for further quality control [36]. These 
FASTQ files were uploaded to the public NCBI SRA database (project PRJNA630027, containing files 
SRR11671127-34). Deposited samples were labeled consecutively as A1, A2, B1, B2, C1, C2, D1 and 
D2: for each time point (A (May 10, 2013); B (May 28, 2013); C (June 14, 2013); and D (July 1, 2013) 
with the amygdalin treatment (labeled with 1) and the control (labeled with 2). We aligned the paired-
end, quality-controlled reads against an index of the A. mellifera genome 
(GCF_003254395.2_Amel_HAv3.1_genomic.fa [37]) using Hisat2 with default parameters (-1 -2 -S –
dta) to remove honeybee reads (Supplementary Information). Reads that did not map to the bee 
genome were further processed for microbe titer analysis. We used samtools view (-S -f4 -h), flagstat, 
sort (-n), and fastq (-1 -2 -s -n) to extract the unmapped reads, check the file, order the reads and 
convert the file for Kraken2 input [38]. The unmapped, paired reads were then run in Kraken2 (2.0.8-
beta) (--db –paired –report –report-zero-counts –use-names –confidence 0.04) to count microbes [39]. 
The Kraken2 database was built based on the organisms listed in our HoloBee dataset 
(https://data.nal.usda.gov/dataset/holobee-database-v20161) which included bacteria, fungi, 
metazoa, protozoa and viruses that are known associates of bees. To this end, we built the Kraken2 
database by preferentially selecting one ‘representative genome’ for each species or genus. In some 
cases, we skipped a species or strain because no specific genome was available, or if the identity of 
the organism was ambiguous. Genomes are listed in Table S1. We added two yeasts that we have 
since isolated from honeybee intestines (Metschnikowia reukaufii (unpublished) and Wickerhamomyces 
anomalus [40]). Bracken [41] was then used on the Kraken2 output for count correction by read bp 
length. 

Microbe and virus titers were examined in two ways. For the first method, which is only 
presented in Table 1 and used to evaluate how comprehensive our HoloBee-based search was, the 
Kraken-style Bracken output was modified to include the unclassified reads that were previously 
specified in the Kraken2 output. For each clade, these reads were divided by total unmapped bee 
reads that were available for microbe counting (i.e., microbe classified plus microbe unclassified 
reads) in each sample and multiplied by 100 to obtain a percentage of relative fragment coverage 
(Table 1; Table S2). Using this methodology, samples were essentially independent of one another 
with a normalization factor of 1. These results were compared to a run using a Kraken2 database built 
from NCBI’s RefSeq sequence data for bacteria, fungi and viruses. Comparison of the two runs 
showed similar classified percentages, except for fungi, for which the RefSeq database does not 
include Nosema (Table 1). This indicated that our HoloBee database captured most of the microbes 
and viruses in the samples because increasing the number of species from a reliable database did not 
clearly increase the number of hits. 
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Table 1. Alignment data for microbe and virus counts for each of the four time points and treatments (amygdalin and control). Kraken2 data are a percentage of 
classified RNA reads (i.e., microbe counts) of all leftover reads after the Hisat2 alignment to the bee genome (“normalization factor” = 1). Hisat2 data are the 
percentage of RNA reads mapped to the A. mellifera genome (further detailed in the Supplementary Information document). When we compare the HoloBee search 
to the RefSeq search using total viral, total bacterial and total fungal reads, we see comparable values for both virus and bacteria, but a relatively large discrepancy 
for fungi. We note that the RefSeq database is missing some organisms in the HoloBee database, notably Nosema. Overall, we believe that this indicates that our 
HoloBee-derived search captured most of the expected honeybee-associated microbes. 

 10 May 2013 28 May 2013 14 June 2013 1 July 2013 
Alignment/count details Amygdalin Control Amygdalin Control Amygdalin Control Amygdalin Control 

A. mellifera Hisat2 overall alignment rate 87.08 95.4 89.19 97.06 91.1 97.91 90.99 88.61 
Kraken2-HoloBee total viral reads 4.30 23.69 7.04 23.65 6.30 10.78 0.64 2.74 
Kraken2-RefSeq total viral reads 4.66 25.20 7.29 24.36 6.62 11.93 0.68 2.80 

Kraken2-HoloBee total bacterial reads 0.90 3.14 1.32 6.71 1.23 7.4 1.85 1.40 
Kraken2-RefSeq total bacterial reads 1.08 3.48 1.49 7.31 1.47 8.14 2.15 1.61 
Kraken2-HoloBee total fungal reads 0.54 5.20 1.92 10.6 1.21 6.13 0.46 0.54 
Kraken2-RefSeq total fungal reads 0.07 0.29 0.13 0.55 0.08 0.44 0.07 0.05 
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In the second method, we imported the non-redundant clade counts (third column of the output) 
from the Kraken-style Bracken output into EdgeR within R Gui and normalized the samples together 
using TMM and CPM (Table S2, which contains the R script and library size adjustments) [42,43]. 
Estimating microbial abundances using the weighted trimmed mean of M-values and exporting them 
as count-per-million (CPM) was similar to previous honeybee microbe count work [44], except that 
we included unclassified microbe reads for the sample size adjustment. Although some assumptions 
of the TMM method are presumably not met, such that most microbes will have consistent abundance 
over time and microbes that are not consistent will have balanced count changes over time [45], we 
believe this method helps compensate for confounding factors, and thus, our interpretation of data 
was based on this second method (Figures 1 and 2). 

Microsoft Excel, Inkscape (0.92.4; PC), and Pavian [46] (the latter using Rgui, 32-bit 
(https://cran.r-project.org/bin/windows/base/; PC; v3.6.3)) were used to view data and to produce 
graphics. 

To supplement Kraken2, we prepared de novo assembled scaffolds. The .fastq paired (-1 and -2) 
and unpaired (-s) data from samtools, as described above, were de novo assembled using the script 
metaspades.py [47]. The scaffolds were run with BLASTN [48] (--remote) using an E-value threshold 
of 1e-100, megablast, the nt database and accepting/culling five hits (April 2020). We summarized 
microbe and virus hits after filtering out scaffolds less than 1 kb and looking for the highest percent 
identity (Table S3). 

2.4. Gene Expression Analysis 

Using the reads that mapped to the bee genome from Hisat2, we used samtools to modify the 
.sam output using view (-S -b) and then sort. Stringtie [49] was then used (-e -o -G) with 
GCF_003254395.2_Amel_Hav3.1_genomic.gff to assemble transcripts and estimate coverage values. 
After each sample was independently run, we merged all transcripts using Stringtie merge. The files 
were then again run with Stringtie using the merged file as the reference (-G -b -o -A -e -C), limiting 
the search to only known transcripts. A gene count matrix was extracted from the Stringtie output 
using Stringtie’s script prepDE.py (-l 100 -i ./Stringtie.index). Counts were then imported into rGui 
for analyses using DESeq2 (as well as vsn, hexbin, pheatmap, rColorBrewer, and ggplot2) [50]. 
Phenotypic data were similarly imported and included treatment (amygdalin or control) and time 
point (A, B, C and D, as listed above). The design included treatment and time as variables. Because 
we only have one replicate per condition per time point, we did not consider doing any differential 
expression analysis (and estimation of dispersion would be misleading). To this end, we chose to look 
at FC (fold-change). Normalized log2 +1 was calculated within DESeq2 and exported to Excel (Table 
S4). This was merged with GCF_003254395.2_Amel_hAv3.1_feature_table.csv with readr in R. We 
sorted the table, and the fold-change was calculated as follows: log2FC = log2(amygdalin)– 
log2(control) and then FC = 2log2FC. We selected the top 20 to 40 up- and down-regulated genes from 
each time point. HymenopteraMine v1.4 [51] was used for GO term enrichment from these FC genes. 
For graphing Figure 3, we first transformed the data using rlog (blind=FALSE) to create a PCA plot 
(plotPCA) using these transformed data [52]. High performance computing servers were provided 
by the BAM (Berlin, Germany), and software was used in Gnome. 

3. Results 

3.1. Amygdalin Consumption May Change Certain Microbe and Viral Titers 

In general, microbes and viruses fluctuated over time regardless of the treatment (Figures 1 and 
2). Our search used the Kraken2 algorithm and was limited to our curated HoloBee dataset, which 
includes microbes and viruses that have been isolated from Apis spp. Because we had only one pooled 
replicate per treatment group per time point, we did not conduct formal statistical analyses, but 
instead describe patterns below. We provide log2 fold-change (FC) as amygdalin/control with a cutoff 
of < −2.0 for relatively lower titers and >2 for relatively higher titers of amygdalin compared to the 
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control within a specific date (as provided in parenthesis throughout the text). This corresponds to a 
fourfold increase or decrease, due to diet treatment. 

 
Figure 1. Bracken-corrected Kraken2 microbe counts (excluding viruses) using a Kraken2-HoloBee 
database. Counts were TMM normalized and presented as CPM (counts per million). Graphs were 
ordered from highest to lowest counts and by taxonomy. Numbers within the graph’s area indicate 
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the log2 fold-change of amygdalin/control for that date. We considered a large increase in counts when 
the fold-change was greater than 2 and a large decrease when less than −2. 

 
Figure 2. Bracken-corrected Kraken2 viral counts using a Kraken2-HoloBee database. Counts were 
TMM normalized and presented as CPM (counts per million). Graphs were ordered from highest to 
lowest counts. Numbers within the graph’s area indicate the log2 fold-change of amygdalin/control 
for that date. We considered a large increase in counts when the fold-change was greater than 2 and 
a large decrease when less than −2. Total viral titers appeared driven by Sinaivirus and Sacbrood 
virus. 
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For bacteria (Figure 1), when we apply our fold-change cutoff criteria, we observed no notable 
change in Bifidobacterium asteroids, Lactobacillales, Gilliamella, Snodgrassella, Frischella perrara, 
Parasaccharibacter apium nor Serratia marcescens loads in the amygdalin treatment relative to the 
control. However, we note certain trends. When we compare the overall seasonal patterns of 
Gilliamella, Snodgrassella, Serratia and total bacterial loads, they followed the same pattern, that is, 
each had similarly higher or lower titers on a specific date. Additionally, when looking at particular 
microbes, we saw that Snodgrassella had generally higher counts in the amygdalin treatment relative 
to the control throughout the season, which was the opposite for Gilliamella and Bifidiobacterium. 
Lastly, while Snodgrassella and Gilliamella titers fluctuated to higher and lower levels of overtime, 
Bifidiobacterium loads in both groups constantly increased over the summer, while F. perrara loads, 
for the most part, decreased over the summer. 

For fungi and eukaryotes (Figure 1), when we apply our fold-change cutoff criteria, L. passim 
titers were lower in the amygdalin treatment relative to the control for three of the four dates (< −4), 
but one date had higher loads (7.2). We observed no notable changes in Nosema nor Ascosphaera apis, 
although at the last time point levels of A. apis increased in the amygdalin group (3.0). Nosema loads 
were relatively lower in three of the four time points in the amygdalin group, although not below the 
preset cutoff. 

Several virus titers appeared to be reduced from amygdalin compared to control treatments, 
although this was not the case for every date (Figure 2). We observed lower DWV-A titers at two 
dates (<−6.3), DWV-B had one date with lower titers (−2.5), lower loads of Chronic bee paralysis virus 
at three dates (<−3.1), and lower Black queen cell virus loads at three dates (<−2.3). Conversely, higher 
titers in the amygdalin group relative to the control were found for Sacbrood virus titers at two dates 
(>3.0), Israeli acute paralysis virus (IAPV) at one date (2.9), and Sinaivirus at one date (3.7). Of all four 
dates, June 14 had the largest increase in total viral loads (1.7), with three of the seven key viruses 
having increased titers on this day. The last date (July 1) had a markedly lower total viral titers (−2.3), 
driven by Sacbrood virus (−2.3), Israeli acute paralysis virus (−8.0), Black queen cell virus (−3.1), and 
Sinaivirus (−2.7), except for DWV-A and DWV-B which had relatively higher titers (2.6 and 6.2, 
respectively). As a control, we also looked at the Tobacco ringspot virus, which is found in honeybees, 
but currently has no concrete evidence showing that it is adapted in the western honeybee [53,54]. 
There were no clear differences in the amygdalin and control treatment for the Tobacco ringspot virus 
count data, which was not the case for almost every other honeybee virus inspected. 

De novo assembled scaffolds were used to support the presence of a microbe (Table S3). Although 
consistent taxonomic hits for scaffolds were not found across all eight samples, every HoloBee-
oriented microbe of interest was identified in at least one sample through BLASTN, except for the 
following: bacteria (P. apium and S. marcescens); fungi (aspergilli and yeasts); other (L. passim and T. 
mercedesae). This could be due to our stringent megablast parameters, relatively lower abundance of 
these organisms or technical reasons, such as short 100 bp cDNA reads. Across the eight samples, the 
most consistently identified microbes were bacteria (G. apicola and S. alvi; found in all samples except 
one sample did not have a hit for S. alvi); fungi (Nosema ceranae, found in all but one sample); and 
viruses (Sacbrood virus, Black queen cell virus and Lake Sinai virus; found in all samples). Other 
viruses were identified, including Apis rhabdovirus, which coincides with a recent report that 
honeybees harbor more viruses than described in the curated HoloBee database [55]. 

3.2. Honey Bee Transcriptome was Not Heavily Altered by Amygdalin Treatment 

Although we found some shifts in microbial and viral levels between treatments and controls, 
we generally found limited changes in immune gene expression by fold-change. We calculated the 
fold-change per time point from transformed gene expression count data to discover any large gene 
expression changes, due to amygdalin consumption, reported as amygdalin treatment relative to the 
control. We focused on antimicrobial peptides (AMPs), upstream genes in the immunity pathways 
of Immune deficiency (Imd) and toll, RNA interference (RNAi) genes, and nutrition and behavior 
genes. None of the assessed immune-system genes, nor the age- and nutrient-sensitive marker 
vitellogenin or major royal jelly protein 1, showed large fold-change differences between treatment 
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and control samples that were consistent across all time points (Table 2 and Table S4). One gene, 
annotated as a toll-like receptor Tollo, was found in the top 20 up-regulated genes at the time point 
’10 May 2013′ in the amygdalin treatment. The last time point (1 July 2013) seemed to have an overall 
decrease in gene expression relative to the other three time points in our gene set in the amygdalin 
treatment (Table 2), except for vitellogenin. Expanding to the top 40 genes with the largest fold-
change, we used a Gene Ontology (GO; www.geneontology.org) enrichment analysis, but we found 
no statistically significant enriched GO terms for the sample points (Table S4). We saw no apparent 
pattern between gene expression and either bacterial or viral loads. 

Table 2. Fold change (FC) for key bee immune-related genes. We chose genes based on immunity 
[56–60], and also nutrition and behavior [61]. We calculated fold-change by using log2FC = 
log2(amygdalin) − log2(control), and then FC = 2log2FC, where FC > 1 is higher expression and 0-1 is 
lower expression of amygdalin-treated colonies relative to the control colonies. 

  May 10 May 28 June 14 July 1  

Antimicrobial peptides  

Hymenoptaecin 1.02 0.64 2.53 0.53 
Abaecin 1.21 1.17 1.80 0.90 
Apidaecin 1.27 1.25 1.61 0.91 
Defensin-1 0.89 0.82 0.88 0.77 

Upstream toll and Imd/JNK 
pathways 

Peptidoglycan-recognition 
protein 1 

1.17 0.96 0.99 1.06 

Peptidoglycan recognition 
protein S2 

1.13 1.00 1.07 0.74 

Beta-1,3-glucan-binding protein 
1 
(gnbp-1) 

1.19 1.21 1.22 0.83 

Nuclear factor NF-kappa-B 
p100 subunit (relish) 

1.15 0.94 1.03 0.84 

Hormone (nutrition/behavior)  

Vitellogenin 2.30 0.97 1.23 4.76 
Major royal jelly protein 1 1.057 0.89 0.95 0.83 
Apisimin 
 

1.08 0.94 0.88 0.80 

Other immunity 
Apidermin 3 3.23 3.19 1.73 0.53 
Lysozyme 
 

0.83 0.89 0.70 0.86 

RNAi 

Protein argonaute-2 
 

1.30 1.04 1.15 1.05 

RISC-loading complex subunit 
TARBP2 
 

1.47 1.03 1.18 0.61 

Lastly, we used the rlog normalized gene expression data to build a principal component 
analysis (PCA) plot, which showed that most of the variance between samples could be explained by 
time point rather than by treatment (Figure 3). 
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Figure 3. PCA plot using rlog-transformed data of known honeybee transcript counts from all 
RNAseq data for all four collection time points for both the amygdalin treatment and sugar-only 
control. 

4. Discussion 

We consider our experimental design to be a reasonable simulation of commercial operations. 
We roughly tested the concentration found in nectar [27]. Presumably, some foragers feeding in 
almond orchards may be consuming a higher concentration of amygdalin than what we had tested. 
By the same token, the precise amount of amygdalin that free-flying and nestmate bees consumed 
remains unknown. However, our results provide insights into how the nectar compound amygdalin 
may affect the honeybee microbial community and immune gene expression. This includes 
pathogens that are of critical interest to sustainable agricultural pollination, such as Deformed wing 
virus and L. passim, where we observed lower titers in the amygdalin group compared to control on 
certain dates. In addition, we did not observe large changes in bacterial titers given our fold-change 
cutoff. 

When we looked for trends of relative loads of bacteria rather than fold-change cutoffs, we 
consistently observed fewer counts of beneficial Gilliamella and Bifidobacterium in treated colonies and 
simultaneously saw increased counts of beneficial Snodgrassella. Therefore, our results could suggest 
that amygdalin may cause slight dysbiosis where Snodgrassella replaces Gilliamella, the latter possibly 
being more susceptible to the compound. Consequences of increased Snodgrassella could help explain 
decreased DWV levels, which is something we have observed from our cage feeding studies (Birke, 
Tauber, and Evans, 2020, in review). However, the loss of an established mutualistic bacterial 
community could be detrimental to proper immune stimulation, host physiology and pathogen 
protection [62]. We also saw no apparent pattern relating the relative expression of AMPs with 
relative bacterial loads, as well as relative virus loads. Therefore, it is plausible that the general change 
in microbe titers was not related to gene expression of AMPs, for which microbe and virus loads may 
be dependent on the season and/or plausibly somewhat influenced by the amygdalin treatment. 

Indeed, mutualistic bacteria are in the bee’s intestine and may be in direct contact with 
xenobiotics. However, amygdalin itself does not show antibacterial effects in vitro, and the almond 
nectar’s bacterial community appears not to be significantly shaped by amygdalin [63]. The effects of 
amygdalin are plausibly due to its derivative. Beta-glucosidase, a hydrolase enzyme that catalyzes 
the initial breakdown of amygdalin, is secreted into the mouth from the hypopharyngeal glands of 
the honeybee, and this enzyme can then be transferred to the midgut [64,65]. The final conversion to 
toxic cyanide is possible with water. Additionally, the toxicity of amygdalin in bees is supported by 
the observation that amygdalin ingestion, but not injection, induces abnormal behavior [30]. 
Therefore, it is probable that the bee is degrading amygdalin into a toxic product when ingested, and 
there exists a mechanism for controlled chemical absorption in the gut. One hypothesis is that 
amygdalin’s derivative is toxic to certain gut microbes, although not enough so to decimate the 
symbionts. How amygdalin is processed in the bee gut or hemolymph and/or by the intestinal 
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microbiota should be a future focus to understand with greater resolution how amygdalin could 
change the microbial composition. 

Viruses are mainly located in the hemocoel, although Sinaivirus may have overall higher titers 
in gut tissue [66]. But given that amygdalin and plausibly its degraded product can also be found in 
the hemolymph after oral ingestion [30], albeit at an almost tenfold reduced amount, it is possible 
that the compound can interact with many viral pools. Another hypothesis is that amygdalin’s 
derivative is toxic to host cells, thus disrupting viral replication. In Palmer-Young et al. [67], 
amygdalin-fed honeybees, whether completely reared in bee cages or released back to the colony, 
had higher levels of hymenoptaecin, lower levels of DWV and no increase in mortality; however, 
these changes were not statistically significant. In the current study, we used near-natural 
concentrations of amygdalin, which were five-fold lower than the concentration of amygdalin used 
in this study by Palmer-Young et al. [67]. That said, the previous experiment complements our 
current work because, in both instances, DWV titers were lower, albeit not statistically significant, in 
bees that had consumed amygdalin. Therefore, the decrease in DWV makes our finding even more 
intriguing. This is because DWV may be considered the most serious of the RNA viral pathogens 
because this virus, in concert with Varroa that transmits the virus, causes deformity, colony loss and 
reduced individual lifespan [68,69]. Black queen cell virus and Chronic bee paralysis virus were also 
both consistently lower in the amygdalin group. 

We included the Tobacco ringspot virus (TRSV), which is a virus that bees pick up from plants, 
as a control for the virus group. We used TRSV as a control because there is a lack of sufficient 
evidence to support that it is a bee pathogen [54]. Interestingly, the titer counts for TRSV between the 
treatment and control essentially overlapped and followed the same pattern over the two months 
(relative fold-change was not greater than 2 on any date). This was in contrast to most honeybee-
associated viruses. Given the possible lack of evidence that TRSV is adapted to honeybees [54] and 
replicates in bees [70], despite some debate [71], if we consider that the majority of TRSV present in 
the bee is not adapted, then our results, which show large viral count differences of honeybee-
associated viruses between conditions, suggest that amygdalin was somehow affecting these 
honeybee viruses that are adapted to bees. 

There can be substantial seasonal variation in titers of microbes and viruses. Virus [72], bacteria 
[73] and L. passim [74] presence in bees is typically seasonal. For example, in a year-long survey [72], 
Lake Sinai Virus was very sparse outside of the spring and summer months of February to July, 
whereas DWV had the highest titers in the cooler months (September to February). In contrast to 
these two virus titers, the Black queen cell virus was consistently high over the surveyed months. 
Pathogens in colonies for commercial almond pollination also have seasonally dependent pathogen 
prevalence [75]. Pathogen prevalence can also vary by geography and climate [76]. In our current 
study, total viral loads generally decreased from May to July in all bees, which seemed mostly driven 
by Sinaivirus, which had the largest abundance. Sinaivirus prevalence decreased from May to July, a 
similar seasonal swing that was observed in previous work [77], while IAPV and DWV-B were 
inconsistent across dates. Although Sinaivirus loads in our work did not exactly follow the month-
to-month observations in [77], we similarly observed a gradual decrease in Sinaivirus over the 
summertime. Furthermore, the larger total viral abundance in the amygdalin treatment on June 14 
appears driven by both Sinaivirus and Sacbrood virus. Future studies are needed to confirm these 
survey results as consistent year-to-year observations, as both a survey to understand viral 
prevalence and to see if amygdalin may affect these viruses under varying temporal circumstances. 
Although one study found an increase in Sinaivirus in “weak” colonies [66] and despite its large 
persistence [78], there is a gap in our knowledge on its pathogenicity and disease phenotypes. The 
uptick of DWV at the last date could be the effect of amygdalin weaning off or from seasonal 
fluctuations. Altogether, it is difficult to pinpoint a reason. Other studies could analyze freshly dead 
bees that died due to higher viral loads, which were missed in our work because we only tested living 
bees, as well as to test colonies from other apiaries that have a different balance of virus richness and 
evenness. One could also track commercial honeybees as they are moved into and out of almond 
orchards to observe if symbiont alterations are persistent, and involve both experimental 
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manipulations of amygdalin exposure (as was done here) and testing during a foraging season with 
plants, such as almonds that contain amygdalin. As noted in [67], repeating compound feeding 
experiments can yield different results due to such factors as the genetic lineage of bees, season, year, 
infection level, the experimental setup and molecular techniques [79,80]. 

Phytochemicals can be harnessed as treatments to improve bee health, and we are currently 
focusing on natural products as safe and reliable remedies to reduce pathogen loads and/or improve 
colony health [32]. We are focused on compounds generally recognized as safe (GRAS) to consume, 
listed by the Federal Food and Drug Administration (FDA) 
(http://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS). Amygdalin is not a GRAS compound; 
however, we felt it was important to test this compound since honeybees have limited foraging 
options during almond pollination and so are predominately exposed to this compound. In general, 
both the understanding of forage nectar constituents on bee health and the development of 
phytochemical applications require an understanding of detrimental and beneficial effects. Many 
phytochemicals can be deterrents for pollinators or toxic in certain concentrations or contexts, and 
may have evolved to combat microbes or herbivores [21,81–83]. Consumption preferences by 
concentration appear to be the case for various nectar compounds except for amygdalin [84]. 
Tiedeken et al. (2014) reported that honeybees do not respond to levels of some compounds, 
including amygdalin, with a threshold of 10 mmol l−1, whereas bumblebees were more sensitive to 
amygdalin at thresholds of 1 mmol l−1 [85]. Generalist bee species may have reduced detection of 
toxins because they have fewer gustatory receptors. Consequentially, although amygdalin and other 
nectar phytochemicals may be problematic during individual consumption, their dilution in the 
colony may make them have negligible effects on the colony, which is important to consider given 
that the colony is the unit on which eusocial selection acts. In fact, amygdalin consumption in a 
natural setting may actually be seasonal and due to nectar dearth [27]. Nevertheless, there is a 
growing body of literature suggesting that phytochemicals in nectars and pollen, even those 
considered toxic in some cases, can improve pollinator health at certain concentrations by reducing 
disease. For our work, with no discernable pattern of immune gene expression and microbe and virus 
titers after ingestion of amygdalin, it is possible that any amygdalin-induced shifts may not overall 
impact colony health, although future studies are needed to measure whole colony health in this 
context. We will cautiously approach amygdalin’s effects until we follow colony health metrics over 
a full commercial operation. 

5. Conclusions 

We fed amygdalin, a secondary compound in the nectar of almond trees, to free-flying 
honeybees over two months at a natural concentration. Amygdalin treatment appeared to reduce 
certain microbial and viral titers at specific dates. We did not observe significant changes in honeybee 
gene expression, due to amygdalin consumption. For future work, one needs to consider the tradeoff 
of dysbiosis of beneficial symbionts with a reduction in pathogen loads. As is the case with purported 
mass bee deaths due to linden tree nectar [86], to truly understand the consequences of nectar 
chemicals on bees, including the holobiont, we need evidence in the context of the floral season, bee 
biology, reward drivers, total nectar chemistry, as well as cumulative and interactive effects. Natural 
products remain an intriguing aspect of bee biology, which could influence the livelihood of the 
backyard and commercial beekeeping. 
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