CHECK YOUR UNDERSTANDING.

EXAMPLE 1: Compute the derivative, f'(x), then find f'(1) for the following functions:
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EXAMPLE 2: Find when f'(x) = 0 for the function f(x) = 3x2 + 12x + 4
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EXAMPLE 3: Suppose that the Revenue of a company can be modelled by R(q) = —q? + 400q + 22500.
Find the rate of change of Revenue when g = 100.
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EXAMPLE 4: Suppose the height of a ball, in feet, can be modeled by:
s(t) = 16— (t — 4)?

where time, t ,is measured in seconds. Find the instantaneous velocity at t = 2
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EXAMPLE 5: Ifh(x) = 4al::+c where a, b, ¢, & d are constants. Find h'(x):
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EXAMPLE 6: An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the
mass is pulled downward and then released, it vibrates vertically. The equation of motion is
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S(t) = 2cos(t) + 3sin(t), t >0
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where s(t) is measured in centimeters and time ¢ in seconds. (We take the positive direction to be downward.)

a) Find the velocity at time t. Be sure to include units.
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b) Graph the velocity and position functions.
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a) Find the intervals where the function is increasing, decreasing.
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b) Find the inflection points.
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c¢) Find the intervals where the function is concave up, concave down.
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