CHECK YOUR UNDERSTANDING.

EXAMPLE 1: Compute the derivative, $f^{\prime}(x)$, then find $f^{\prime}(1)$ for the following functions:
a) $f(x)=x^{2}+3$
b) $f(x)=7 \sqrt{x}+\frac{5}{x^{3}}$
c) $f(x)=3 x^{5}+2 x^{2}+\frac{1}{x}$

EXAMPLE 2: Find when $f^{\prime}(x)=0$ for the function $f(x)=3 x^{2}+12 x+4$

EXAMPLE 3: Suppose that the Revenue of a company can be modelled by $R(q)=-q^{2}+400 q+22500$. Find the rate of change of Revenue when $q=100$.

EXAMPLE 4: Suppose the height of a ball, in feet, can be modeled by:

$$
s(t)=16-(t-4)^{2}
$$

where time, t, is measured in seconds. Find the instantaneous velocity at $t=2$

EXAMPLE 5: If $\mathrm{h}(x)=\frac{4 a b x+c}{d}$ where $a, b, c, \& d$ are constants. Find $\mathrm{h}^{\prime}(x)$:

EXAMPLE 6: An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then released, it vibrates vertically. The equation of motion is

$$
s(t)=2 \cos (t)+3 \sin (t), \quad t \geq 0
$$

where $s(t)$ is measured in centimeters and time t in seconds. (We take the positive direction to be downward.)
a) Find the velocity at time t. Be sure to include units.
b) Graph the velocity and position functions.

EXAMPLE 7: For the function $f(x)=-x^{3}+3 x^{2}-4$
a) Find the intervals where the function is increasing, decreasing.
b) Find the inflection points.
c) Find the intervals where the function is concave up, concave down.
d) Sketch the graph

