Copyright © 2010 by Murray Eisenberg. All rights reserved.
For use only in connection with Math 421, Fall 2010, at University of Massachusetts Amherst.

1. [20 pt] This part of Homework 1 consists of the five problems from WeBWorK set 421HW1.
2. (a) [Page $6 \# 5$ (b)] [$\mathbf{1 0} \mathbf{~ p t}$] From the del Ferro-Tartaglia formula, one solution of this depressed cubic is:

$$
x=\sqrt[3]{65+142 i}+\sqrt[3]{65-142 i} \quad[2 \mathrm{pt}]
$$

Following Bombelli's method, assume this is real and that, in fact, there are real u, v with

$$
\sqrt[3]{65+142 i}=u+i v, \sqrt[3]{65-142 i}=u-i v
$$

Then $(u+i v)^{3}=65+142 i$. Cubing and simplifying gives:

$$
\left(u^{3}-3 u v^{2}\right)+\left(3 u^{2} v-v^{3}\right) i=65+142 i \quad[2 \mathrm{pt}]
$$

Equating real and imaginary parts gives:

$$
\left\{\begin{array}{c}
u^{3}-3 u v^{2}=65 \\
3 u^{2} v-v^{3}=142
\end{array}\right.
$$

Factor the left sides to obtain:

$$
\left\{\begin{array}{c}
u\left(u^{2}-3 v^{2}\right)=65 \tag{*}\\
v\left(3 u^{2}-v^{2}\right)=142
\end{array} \quad[1 \mathrm{pt}]\right.
$$

Now seek solutions u, v of this system that are positive integers. Since 65 has prime factorization $65=5 \cdot 13$, two possible solutions of the first equation are

$$
\left(u=5 \text { and } u^{2}-3 v^{2}=13\right) \text { or }\left(u=13 \text { and } u^{2}-3 v^{2}=5\right)
$$

Now $u=5$ and $u^{2}-3 v^{2}=13$ means

$$
\begin{equation*}
u=5 \text { and } v=2 . \quad[1 \mathrm{pt}] \tag{*}
\end{equation*}
$$

And those values of u, v also satisfy the second equation in $\left(^{*}\right)$. [You could, instead, run through the other possibility and see where it leads, or start with the second equation in (*).]
Thus one solution to the original cubic is

$$
x=(u+i v)+(u-i v)=2 u=2(5)=10 . \quad[1 \mathrm{pt}]
$$

You may now directly check that $x=10$ does indeed satisfy the equation $x^{3}-87 x-130=$ 0.

Divide $x^{3}-87 x-130$ by $x-10$ (by hand or by using Mathematica's PolynomialQuotient to obtain

$$
x^{3}-87 x-130=(x-10)\left(x^{2}+10 x+13\right) .
$$

From the quadratic formula, the zeros of the quadratic factor are $x=-5 \pm 2 \sqrt{3}$. Thus the zeros of the original cubic are:

$$
\begin{array}{|lll}
\hline x=10, & -5+2 \sqrt{3}, & -5-2 \sqrt{3}
\end{array}[2 \mathrm{pt}]
$$

(b) [Page $6 \# 6$ (a)] [10 pt] The given cubic $z^{3}-6 z^{2}-3 z+18$ has the form $z^{3}+a_{2} z^{2}+a_{1} z+a_{0}$ with $a_{2}=-6$. Then the Cardan substitution to be used is

$$
z=x-a_{2} / 3=x-(-6) / 3=x+2 . \quad[1 \mathrm{pt}]
$$

In terms of the new variable x, the original cubic becomes

$$
\begin{aligned}
& (x+2)^{3}-6(x+2)^{2}-3(x+2)+18=\left(x^{3}+6 x^{2}+12 x+8\right)-6\left(x^{2}+4 x+4\right)-3(x+2)+18 \\
& =x^{3}-15 x-4 . \quad[3 \mathrm{pt}]
\end{aligned}
$$

This is the very same depressed cubic analyzed in the text; as shown there, the delFerroTartaglia formula gives as one solution

$$
x=4 . \quad[2 \mathrm{pt}]
$$

Long division gives

$$
x^{3}-15 x-4=(x-4)\left(x^{2}+4 x+1\right) .
$$

By the quadratic formula the solutions of $x^{2}+4 x+1$ are $x=-2 \pm \sqrt{3}$. Thus the three solutions of the depressed cubic are

$$
x=4, \quad-2+\sqrt{3}, \quad-2-\sqrt{3} . \quad[2 \mathrm{pt}]
$$

To find the solutions of the original cubic (with variable z) from the solutions of the depressed cubic (with variable x) use the relation $z=x+2$ to obtain

$$
\begin{array}{lll}
\hline z=6, & \sqrt{3}, & -\sqrt{3} .
\end{array} \quad[2 \mathrm{pt}]
$$

3. [Verify distributive law from operations definitions in terms of ordered pairs] [$\mathbf{2 0} \mathbf{~ p t}$] Let $z=(a, b), w=(u, v), \zeta=(s, t)$. Then:

$$
\begin{aligned}
z(w+\zeta) & =(a, b)(u+s, v+t) \\
& =(a(u+s)-b(v+t), a(v+t)+b(u+s)) \\
& =(a u+a s-b v-b t, a v++a t+b u+b s) \quad[10 \mathrm{pt}]
\end{aligned}
$$

On the other hand,

$$
\begin{align*}
z w+z \zeta & =(a u-b v, a v+b u)+(a s-b t, a t+b s) \\
& =(a u-b v+a s-b t, a v+b u+a t+b s) \tag{10pt}
\end{align*}
$$

which is the same ordered pair as the value of $z(w+\zeta)$.
4. [Page $15 \# 6]$ Write $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$ with $x_{1}, y_{1}, x_{2}, y_{2}$ real.
(a) $[10 \mathrm{pt}]$ This is true because:

$$
\operatorname{Re}\left(z_{1}+z_{2}\right)=\operatorname{Re}\left(\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)\right)=x_{1}+x_{2}=\operatorname{Re} z_{1}+\operatorname{Re} z_{1}
$$

(d) $[10 \mathrm{pt}]$ This is not true in general because, for example, it fails for $z_{1}=i=z_{2}$. Indeed,

$$
\operatorname{Im}(i \cdot i)=\operatorname{Im}(-1)=0
$$

whereas

$$
\operatorname{Im}(i) \operatorname{Im}(i)=1 \cdot 1=1
$$

Optional: In general,

$$
\operatorname{Im}\left(z_{1} z_{2}\right)=\operatorname{Im}\left(x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+x_{2} y_{1}\right)\right)=x_{1} y_{2}+x_{2} y_{1}
$$

whereas $\left(\operatorname{Im} z_{1}\right)\left(\operatorname{Im} z_{2}\right)=y_{1} y_{2}$. So the equality $\operatorname{Im}\left(z_{1} z_{2}\right)=\left(\operatorname{Im} z_{1}\right)\left(\operatorname{Im} z_{2}\right)$ will fail whenever $x_{1} y_{2}+x_{2} y_{1} \neq y_{1} y_{2}$. (Only [7 pt$]$ if that's all you do.) It remains to find (at least) one particular example in which $x_{1} y_{2}+x_{2} y_{1} \neq y_{1} y_{2}$. The simplest is perhaps $z_{1}=i=z_{2}$, which was used above.
5. [Page 19 identity (1-26)] [$\mathbf{2 0} \mathbf{~ p t}$]

Method 1: Use basic properties. Namely, use: the definition $z_{1} / z_{2}=z_{1} z_{2}{ }^{-1}$ together with the identities $z^{-1}=\left(1 /|z|^{2}\right) \bar{z},|z w|=|z||w|$, and $|c w|=c|w|$ for a real $c>0$. Then:

$$
\left|\frac{z_{1}}{z_{2}}\right|=\left|z_{1}\left(\frac{1}{\left|z_{2}\right|^{2}} \overline{z_{2}}\right)\right|=\left|\frac{1}{\left|z_{2}\right|^{2}}\left(z_{1} \overline{z_{2}}\right)\right|=\frac{1}{\left|z_{2}\right|^{2}}\left|z_{1} \overline{z_{2}}\right|=\frac{1}{\left|z_{2}\right|^{2}}\left|z_{1}\right|\left|\overline{z_{2}}\right|=\frac{1}{\left|z_{2}\right|^{2}}\left|z_{1}\right|\left|z_{2}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
$$

Method 2: Use polar form. (Only [18 pt] unless you include the "justification" mentioned below.)

$$
\left|\frac{z_{1}}{z_{2}}\right|=\left|\frac{r_{1} e^{i \theta_{1}}}{r_{2} e^{i \theta_{2}}}\right|=\frac{r_{1}}{r_{2}}\left|e^{i \theta_{1}} e^{-i \theta_{2}}\right|=\frac{r_{1}}{r_{2}}\left|e^{i\left(\theta_{1}-\theta_{2}\right)}\right|=\frac{r_{1}}{r_{2}} \cdot 1=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
$$

Of course this requires justification, namely, that $e^{i \theta_{1}} / e^{i \theta_{2}}=e^{i\left(\theta_{1}-\theta_{2}\right)}$. But that's easy:

$$
e^{i \theta_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}=e^{i\left(\theta_{2}+\left(\theta_{1}-\theta_{2}\right)\right)}=e^{i \theta_{1}}
$$

Method 3: Use Cartesian coordinates and to hack out everything algebraically from scratch starting with $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$. This way is most unpleasant and does not reasonably exploit properties already established. (Only [12 pt] for this way.)

