Due: Friday 24 Sep. at start of class except \#1 due in WeBWorK Thursday 23 Sep. 5:00 p.m.

For Mathematica work, remember:

- print both your input cell(s) and the corresponding output;
- put printouts in their proper places among the solutions, so that all your work is in the order of the problem list; and
- you may write on printouts, too, or use Text cells there instead of writing on paper.

1. This question consists of set 421HW2 in WeBWorK. The answers to the questions there are due Thursday 23 Sep. 5:00 p.m.
2. Do page 21, Exercise 6, (b) and (c).
3. Do page 30, Exercise 7. Also find the set $\arg \left(z_{1}\right)$.
4. Do page 37, Exercise 2.
5. Do page 37, Exercise 4.
6. (a) With paper and pencil calculations, find the 6th roots of unity, each in Cartesian form $a+b i$.
(b) Repeat (a) but using Mathematica.
(c) Indicate which one is the primitive 6th root of unity, and why.
(d) In Mathematica, draw all six of them by using Presentations. In your drawing display the points (made big enough to see readily) as well as line segments that "connect the dots" to form a polygon.
7. Find the 6 th roots of $64+64 i$. Leave your answers as exact expressions and not as numerical approximations.
8. Do page 38, Exercise 12. [Hints: The nth roots of unity are the zeros of the polynomial $z^{n}-1$; what, then, does the factor theorem say about $z^{n}-1$? Also, what do you get if you multiply $1+z+z^{2}+\cdots+z^{n-1}$ by $z-1$?]
