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ABSTRACT

MEASURING PROTON SPIN POLARIZABILITIES
WITH POLARIZED COMPTON SCATTERING

FEBRUARY 2013

PHILIPPE PAUL MARTEL

B.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed by: Professor Rory Miskimen

Polarized nuclear Compton scattering on a proton target provides a test of low

energy QCD. The beam-target asymmetries of a circularly polarized Bremsstrahlung

photon beam on a transversely polarized butanol target (Σ2x) and on a longitudi-

nally polarized butanol target (Σ2z), and the beam asymmetry of a linearly polarized

Bremsstrahlung beam on an unpolarized hydrogen target (Σ3) are sensitive to the

proton spin polarizabilities, third order terms in the energy expansion of the Comp-

ton scattering amplitude. This experiment consisted of the Σ2x measurement, both

just below and above two-pion threshold.
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CHAPTER 1

MOTIVATION FOR COMPTON SCATTERING

The interaction of light with matter is described by various processes at different

energies. The primary type of matter this work is focused on is that of individual

protons (or a hydrogen atom). However, there is a significant contribution of carbon

that must also be accounted for.
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Figure 1.1: Electromagnetic interactions for hydrogen and carbon. Lines are photo-
electric absorption (blue), coherent (Rayleigh) scattering (red), incoherent (atomic
Compton) scattering (green), pair production in nuclear field (magenta), pair pro-
duction in electron field (purple), and their total (black).[1]

Figure 1.1 shows some of the processes, and their relative strengths, for hydrogen

and carbon. At low photon energies (below 3 keV for hydrogen, 20 keV for carbon)

the dominating process is the photoelectric effect, where the photon is absorbed by

the atom followed by the ejection of an electron. Above this energy atomic Compton

scattering becomes more prominent. In this process the photon transfers some of its

energy to an orbital electron, allowing it to break free of the atom, while the photon
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retains some of its energy as it scatters away. At higher energies, the photon can

interact with the nuclear or electron fields and produce a particle/anti-particle pair

(typically electron/positron). Conveniently named, pair production requires a photon

energy above the combined rest mass of the pair (1.022 MeV for electron/positron).

For hydrogen this becomes the dominant process above 80 MeV, and for carbon above

26 MeV.[1]

1.1 Compton Scattering

There are also other processes, such as coherent scattering (elastic scattering off

of the atom itself), pion photoproduction (similar to pair production), and photodis-

integration (knocking a neutron or proton out of the nucleus). However, the process

involved in this study is nuclear Compton scattering (henceforth simply called Comp-

ton scattering), where the photon scatters off of the nucleus. For hydrogen, this is

scattering off of a single proton

γ(q) + p(p)→ γ(q′) + p(p′) (1.1)

where q and q′ represent the initial and final four-momenta of the photon, respectively,

and p and p′ represent the initial and final four-momenta of the proton, respectively.

1.1.1 Born Terms

The amplitude of this Compton scattering process can be expanded in terms of

the photon energy, where the zeroth order term gives the typical Thomson scattering

off of a point-like charged particle of a given mass. Using the notation and derivation

of Levchuk and L’vov[2], the zeroth order Hamiltonian has the form

H
(0)
eff =

~π2

2m
+ eφ (1.2)
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where m is the mass, e is the electric charge, and

~π = ~p− e ~A (1.3)

is a covariant momentum in which ~p is the momentum and ~A is the vector potential.

The Hamiltonian at first order is dependent upon the anomalous magnetic moment,

κ, of the nucleon.

H
(1)
eff = −e(1 + κ)

2m
~σ · ~H − e(1 + 2κ)

8m2
~σ ·
[
~E × ~π − ~π × ~E

]
(1.4)

These two terms together are the so-called Born terms, and represent the external

degrees of freedom of the nucleon. At photon energies below 20 MeV approximately,

the photon can only access these external degrees of freedom.[3]

1.1.2 Scalar Polarizabilities

At higher energies, the internal degrees of freedom start to play a role. The second

order in the energy expansion contains the scalar polarizabilities

H
(2)
eff = −4π

[
1

2
αE1

~E2 +
1

2
βM1

~H2

]
(1.5)

where αE1 and βM1 are the electric and magnetic polarizability. These terms rep-

resent the internal response of the nucleon to an applied electric or magnetic field,

respectively.[4] This can be visualized by imagining the nucleon containing, in addi-

tion to the constituent quarks, a sea of virtual charged pions popping in and out of

existence. Applying an electric field across the nucleon, as shown in Figure 1.2, will

induce a current in this cloud, separating the positive from the negative pions, and

physically ‘stretching’ the nucleon in the direction of the field. Applying a magnetic

field across the nucleon, as shown in Figure 1.3, will also induce a current in the cloud,

3



(a) Electric field off (b) Electric field on

Figure 1.2: Nucleon response to electric field[5]

creating a diamagnetic moment that directly opposes the paramagnetic moment of

the constituent quarks.

(a) Magnetic field off (b) Magnetic field on

Figure 1.3: Nucleon response to magnetic field[5]

A large number of Compton scattering experiments have taken place on unpo-

larized proton targets since the 1950’s, many of which can be utilized to extract
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the electric and magnetic polarizabilities. A very thorough discussion of these ex-

periments is given by Grießhammer et al.[6] The principle in extracting the scalar

polarizabilities is a comparison between the theoretical curves produced using only

the Born terms, versus using a Low Energy Expansion (LEX), or using a Disper-

sion Relation (DR).[7] The LEX calculation[8][9] provides an expression for the cross

section as

(
dσ

dΩ

)
=

(
dσ

dΩ

)
Born

−ωω′
(
ω′

ω

)2
e2

m

[
α + β

2
(1 + cosθ)2 +

α− β
2

(1− cosθ)2

]
(1.6)

Dispersion relations will be discussed in more detail in subsubsection 1.1.3.3. The

difference between these theories is shown in Figure 1.4a.[10] While the LEX and DR

curves are identical below approximately 90 MeV, they both differ from the Born

curve. Above 90 MeV all of their behaviors become noticeably different.

The current Particle Data Group (PDG) values for these polarizabilities were the

result of an experiment by Olmos de León et al. at MAMI.[11] This experiment used

the A2 tagged photon beam of 55-165 MeV with an array of TAPS detectors covering

the angular range of 59-155◦, as shown in Figure 1.4b. Their results, along with DR

curves of clear agreement, are shown in Figure 1.4. With their data they extracted

the following values for αE1 and βM1:

αE1 = [11.9± 0.5 (stat)∓ 1.3 (syst)]× 10−4 fm3 (1.7)

βM1 = [1.2± 0.7 (stat)± 0.3 (syst)]× 10−4 fm3 (1.8)

In addition to their own extraction of the scalar polarizabilities, their analysis

combined results from three previous experiments:

• Federspiel et al., 32-72 MeV at 60 and 135◦[12]

• MacGibbon et al., 70-100 MeV at 90 and 135◦[10]
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(a) Theory Curves[10]

(b) TAPS setup[11] (c) Cross sections[11]

Figure 1.4: Alpha and beta measurement. (a) Curves with various theoretic predic-
tions: Born terms only, Low Energy Expansion (LEX), or dispersion calculation.[10]
(b) Setup from TAPS/MAMI measurement.[11] (c) Results from TAPS/MAMI
measurement.[11]

• Zieger et al., 98-132 MeV at 180◦[13]

and performed a global fit with all of these data points. This fit also utilized a

constraint given by the Baldin[14] (or BL, for Baldin-Lapidus[15]) sum rule

α + β =
1

2π2

∫ ∞
ω0

σtot(ω)

ω2
dω (1.9)

6



Their error contour plot, provided here in Figure 1.5, shows the constraints the various

experiments, as well as the sum rule, bring to the fit. Their results from that analysis

Figure 1.5: Alpha and beta results. Global fit for αE1 and βM1, showing their TAPS
data, Federspiel et al.[12], MacGibbon et al.[10], and Zieger et al.[13] (whose measure-
ment at 180◦ provides a measurement of αE1−βM1 only, giving the hashed region).[11]

then provided the following global fit (and current PDG) values:

αE1 = [12.1± 0.3 (stat)∓ 0.4 (syst)± 0.3 (mod)]× 10−4 fm3 (1.10)

βM1 = [1.6± 0.4 (stat)± 0.4 (syst)± 0.4 (mod)]× 10−4 fm3 (1.11)

Their re-evaluation[11] of the Baldin sum rule is also important

αE1 + βM1 = (13.8± 0.4)× 10−4 fm3 (1.12)

as this was used in the dispersion calculations for the sensitivity studies outlined in

this dissertation, along with the difference between the two polarizabilities

αE1 − βM1 = [10.5± 0.9 (stat + syst)± 0.7 (mod)]× 10−4 fm3 (1.13)
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It should be noted, however, that recent calculations using Baryon Chiral Per-

turbation Theory (BχPT) by Lensky and Pascalutsa[16], and Chiral Effective Field

Theory (χEFT) by Grießhammer et al.[6], both exhibit similar discrepancies with the

PDG values.

1.1.3 Spin Polarizabilities

At third order in the energy expansion the vector, or spin, polarizabilities appear:

H
(3)
eff = −4π

[
1

2
γE1E1~σ · ( ~E × ~̇E) +

1

2
γM1M1~σ · ( ~H × ~̇H)

− γM1E2EijσiHj + γE1M2HijσiEj

]
(1.14)

These describe a coupling of the proton spin with an applied electric or magnetic

field.[4] Although the visualization is not as good as that for αE1 or βM1, this cou-

pling can be thought of as causing a precession of the nucleon spin with respect to

the applied field, analogous to a classical Faraday effect.[5] Unlike the scalar polar-

izabilities, the four proton spin polarizabilities have not been individually measured.

Several experiments have provided values for various linear combinations of the SPs,

notably the forward spin polarizability:

γ0 = −γE1E1 − γE1M2 − γM1E2 − γM1M1 = (−1.0± 0.08)× 10−4 fm4[17][18] (1.15)

and the backward spin polarizability:

γπ = −γE1E1 − γE1M2 + γM1E2 + γM1M1 = (−38.7± 1.8)× 10−4 fm4[19] (1.16)

It should be noted that this value for the backward spin polarizability is the sum of

the dispersive part and the π0-pole term, γπ
0−pole

π = −46.7 × 10−4 fm4[20]. Without

this term, it would be

8



γdisp
π = (8.0± 1.8)× 10−4 fm4[4] (1.17)

1.1.3.1 Forward Spin Polarizability

The measurement of the forward spin polarizability, γ0, comes from a set of two

experiments of the GDH Collaboration. The primary goal of these experiments was

to measure the Gerasimov, Drell, Hearn (GDH) sum rule integral

2π2αeκ
2

M2
=

∫ ∞
ω0

σ3/2(ω)− σ1/2(ω)

ω
dω (1.18)

where ω is the photon energy, κ is the anomalous magnetic moment, M is the nucleon

mass, and σ is the total photo-absorption cross section. The designation of σ3/2

and σ1/2 comes from the fact that the measurement of the GDH integral requires a

circularly polarized photon beam with a longitudinally polarized proton target. The

total photo-absorption cross section when the helicity of the beam and the polarization

of the target are parallel is σ3/2, and when the helicity of the beam and the polarization

of the target are anti-parallel is σ1/2. The collaboration divided this measurement into

two steps, first from 200 to 800 MeV at MAMI, and second from 700 MeV to 1.8 GeV

at ELSA. Both labs used detectors with nearly 4π sr coverage, DAPHNE at MAMI,

and the appropriately named ‘GDH-Detector’[21] at ELSA, both supplemented by

forward detectors. A frozen spin target, similar to that used in this dissertation’s

experiment, provided the polarized target. The combined differences in total photo-

absorption cross sections are shown in Figure 1.6.[18]

A similar relation to the GDH sum rule exists, relating γ0 to these differences in

total photo-absorption cross sections:

γ0 = − 1

4π2

∫ ∞
ω0

σ3/2(ω)− σ1/2(ω)

ω3
dω (1.19)

which simultaneously allowed for a determination of the forward spin polarizability.

That analysis resulted in the number given in Equation 1.15.

9



Figure 1.6: Measurement of the GDH sum rule and the forward spin polarizability.
Determined by the difference between parallel and anti-parallel photo-absorption cross
sections for circularly polarized photons scattering from a longitudinally polarized
target.[18]

1.1.3.2 Backward Spin Polarizability

The backward spin polarizability, γπ, was determined with a dispersive analysis

of back-angle Compton scattering at MAMI, with a single large NaI detector at 136◦,

and a forward wall (SENECA)[19]. Their plot, reproduced here in Figure 1.7, shows

their cross sections compared with other data sets from Saskatoon[22], LEGS[23][24],

and LARA[25][26]. The result for γπ used here, as given in Equation 1.16, is from

their fit to these data sets, arguing in the process that the LEGS data set appears to

be inconsistent with their data as well as previous measurements of γπ. The data set

from the LEGS collaboration[24] also measured two other linear combinations of the

spin polarizabilities

γ13 = −γE1E1 + γE1M2 (1.20)

γ14 = −γE1E1 − 2γM1M1 − γE1M2 (1.21)

10



Figure 1.7: Measurement of the backward spin polarizability. Determined by back-
angle Compton scattering compared to other data-sets, showing fits for various values
of the backward spin polarizability.[19]

1.1.3.3 Theoretical Predictions

The interaction of light with point-like charged particles is well described by quan-

tum electrodynamics (QED), but introducing these internal degrees of freedom into

the proton requires the use of quantum chromodynamics (QCD) which describes the

strong interactions of quarks and gluons. While perturbative QCD works very well at

high energies, the coupling constant becomes so large at low energies that the quarks

and gluons can not be used as the relevant degrees of freedom. At the limit where the

masses of the lighter quarks (up and down) go to zero there is a decoupling of left-

and right-handed quarks, leading to what’s called chiral symmetry. It’s known, how-

ever, that this symmetry must be spontaneously broken in nature, which leads to the

existence of three mass-less Goldstone bosons coinciding with the pion mesons.[27]

Additionally one can include the strange quark which, while much heavier than the

up or down quark, is still much lighter than the charm, bottom, or top quarks. In

this setting there are then five additional Goldstone bosons coinciding with the kaon
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and eta mesons (neglecting the eta prime). With the masses of the lighter quarks

and these mesons being non-zero chiral symmetry is explicitly broken, but since they

are still relatively small compared to baryon and other meson masses, it remains

an approximate symmetry of QCD with an expansion parameter given by the pion

mass.[28]

This framework, derived by Weinberg[29] and expanded upon by Gasser and

Leutwyler[30][31], is called Chiral Perturbation Theory (χPT) or with the inclusion

of the nucleon itself as a degree of freedom, called Heavy Baryon χPT (HBχPT). To

additionally include the delta resonance as another degree of freedom, the mass split-

ting between the nucleon and ∆ becomes another parameter in the power counting

scheme. This method is called the small scale expansion (SSE).[32] To get around a

loss of manifest Lorentz invariance in HBχPT, the infrared regularization (IR) scheme

of Becher and Leutwyler[33] can be used to examine Lorentz invariant χPT.[34]

Another method for studying the polarizabilities is that of dispersion relations.

For Compton scattering, with initial photon and proton four-momenta of q and p,

going to final photon and proton four-momenta of q′ and p′, respectively, the Lorentz

invariant Mandelstam variables are

s = (q + p)2 (1.22)

t = (q − q′)2
(1.23)

u = (q − p′)2
(1.24)

where s is then the square of the center-of-mass energy, and t is the square of the

momentum transfer. Two combinations of these variables

s+ t+ u = 2M2 (1.25)

ν =
s− u
4M

(1.26)
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are also invariant, where M is the proton mass.[35] The T matrix for Compton scat-

tering can then be defined by six independent structure functions Ai(ν, t), i = 1, . . . , 6,

which are functions of two of these variables, ν and t, and where

ReAi(ν, t) = ABi (ν, t) +
2

π
P
∫ ∞
νthr

dν ′
ImsAi(ν

′, t)

ν ′2 − ν2
(1.27)

Due to the asymptotic behavior of Ai as ν → ∞ at a fixed value for t, it turns out

that A1 and A2 do not converge. One way to cause them to converge is to subtract

off versions of them at ν = 0 and at fixed t.[36]

ReAi(ν, t) = ABi (ν, t) +
[
Ai(0, t)− ABi (0, t)

]
+

2

π
ν2P

∫ ∞
νthr

dν ′
ImsAi(ν

′, t)

ν ′(ν ′2 − ν2)
(1.28)

The subtraction constants Ai(0, t)− ABi (0, t) can be determined by yet another sub-

traction, this time at t = 0, resulting in another set of subtraction constants

ai = Ai(0, 0)− ABi (0, 0) (1.29)

These constants, however, are directly related to the scaler polarizabilities by

αE1 = − 1

4π
(a1 + a3 + a6) (1.30)

βM1 =
1

4π
(a1 − a3 − a6) (1.31)

the spin polarizabilities by

γE1E1 =
1

8πM
(a2 − a4 + 2a5 + a6) (1.32)

γM1M1 = − 1

8πM
(a2 + a4 + 2a5 − a6) (1.33)

γE1M2 =
1

8πM
(a2 − a4 − a6) (1.34)

γM1E2 = − 1

8πM
(a2 + a4 + a6) (1.35)
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and to the forward and backward spin polarizabilities by[4]

γ0 =
1

2πM
a4 (1.36)

γπ = − 1

2πM
(a2 + a5) (1.37)

The a2 term in γπ is the π0-pole term that was mentioned for Equation 1.17.

Various theoretical values for these polarizabilities are predicted by some of these

theories, as shown in Table 1.1, compiled together by Drechsel et al.[37]

O(p3) O(p4) O(p4) LC3 LC4 SSE BGLMN HDPV KS DPV
γE1 -5.7 -1.4 -1.8 -3.2 -2.8 -5.7 -3.4 -4.3 -5.0 -3.8
γM2 1.1 0.2 0.7 0.7 0.8 .98 0.3 -0.01 -1.8 0.5
γE2 1.1 1.8 1.8 0.7 0.3 .98 1.9 2.1 1.1 1.6
γM1 -1.1 3.3 2.9 -1.4 -3.1 3.1 2.7 2.9 3.4 2.9
γ0 4.6 -3.9 -3.6 3.1 4.8 .64 -1.5 -0.7 2.3 -1.1
γπ 4.6 6.3 5.8 1.8 -0.8 8.8 7.7 9.3 11.3 7.8

Table 1.1: Values for the spin polarizabilities. O(pn) are Chiral Perturbation Theory
(χPT) calculations.[38][39][40] LC3 and LC4 are O(p3) and O(p4) Lorentz invariant
χPT calculations, respectively.[34] SSE is a Small Scale Expansion calculation.[38]
The remaining four are all dispersion relation calculations.[41][42][43][37] Of particular
note are the HDPV[42] results, which will be used as the basis for this study.

Given the wide range of values depicted in Table 1.1, a measurement of the spin

polarizabilities would provide a useful tool in helping to validate (or invalidate) one, or

some, of these theories. The experiment discussed in this thesis is the first component

of a Compton scattering program measuring beam-target asymmetries (circularly po-

larized beam with either a transversely or longitudinally polarized target) and the

beam asymmetry (linearly polarized beam with an unpolarized target). These exper-

iments will access the higher order terms in the energy expansion of Equation 1.14,

and allow for the extraction of the proton spin polarizabilities.
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1.2 Polarized Compton Scattering Asymmetries

This dissertation presents the results of the first of these Compton scattering asym-

metry measurements, that of a circularly polarized photon beam on a transversely

polarized target.

Σ2x =
σR+x − σL+x
σR+x + σL+x

=
NR

+x −NL
+x

NR
+x +NL

+x

(1.38)

where σR+x and σL+x represent the cross sections for a positive transversely polarized

target with a right and left helicity beam, respectively. The benefit of calculating

an asymmetry is that the terms to relate the cross section to the number of events

observed, N , divide out between the numerator and denominator. This will be dis-

cussed at length in chapter 6. This set of Compton scattering can be visualized by

Figure 1.8.

(a) NR
+x (b) NL

+x (c) NR
−x (d) NL

−x

Figure 1.8: Orientations for Compton scattering with a transversely polarized target
and a circularly polarized photon beam. The arrow on the left of each represent the
beam helicity, and the arrow on the right of each represents the target polarization
direction.

In the future a similar experiment will be performed with a longitudinally polarized

proton target and a circularly polarized beam, giving the asymmetry

Σ2z =
σR+z − σL+z
σR+z + σL+z

=
NR

+z −NL
+z

NR
+z +NL

+z

(1.39)

where σR+z and σL+z represent the cross sections for a positive longitudinally polarized

target with a right and left helicity beam, respectively. This set of Compton scattering

can be visualized by Figure 1.9.
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(a) NR
+x (b) NL

+x (c) NR
−x (d) NL

−x

Figure 1.9: Orientations for Compton scattering with a longitudinally polarized target
and a circularly polarized photon beam. The arrow on the left of each represent the
beam helicity, and the arrow on the right of each represents the target polarization
direction.

Due to parity, it is also trivial to see from the figures that:

σR−x = σL+x (1.40)

σL−x = σR+x (1.41)

σR−z = σL+z (1.42)

σL−z = σR+z (1.43)

for a given energy, theta, and phi.

In the near future the collaboration at MAMI will begin a measurement with a

linearly polarized beam on an unpolarized proton target, giving the asymmetry

Σ3 =
σ‖ − σ⊥
σ‖ + σ⊥

=
N‖ −N⊥
N‖ +N⊥

(1.44)

where σ‖ and σ⊥ represent the cross sections for an unpolarized target with a linearly

polarized beam parallel and perpendicular to the scattering plane, respectively. This

set of Compton scattering can be visualized by Figure 1.10.

1.2.1 Sensitivity

To study the sensitivities of the proton spin polarizabilities on nuclear Compton

scattering a fixed-t dispersion analysis code[4] was used to generate tables of cross
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(a) N⊥ (b) N‖

Figure 1.10: Orientations for Compton scattering with a linearly polarized photon
beam. The green ’X’ on the left plot represents the polarization of the beam as
perpendicular to the paper, whereas the arrow on the right represents the polarization
of the beam as parallel to the paper.

sections for various values of the polarizabilities. This was done for the three experi-

mental runs, Σ2x, Σ2z, and Σ3, at a beam energy of 290 MeV. Using the construction

of γ0 and γπ given in Equation 1.15 and Equation 1.17, respectively, the spin po-

larizabilities can be written in a basis of γE1E1, γM1M1, γ0, and γπ. From this basis

one unknown spin polarizability is varied while the other is kept fixed. This gives an

indication for what each asymmetry is more sensitive to. Given the fact that α, β,

γ0, and γπ are all used in this dispersion code to produce these cross sections, it’s

important at each point to allow them to vary about their experimental errors. Fig-

ure 1.11a to Figure 1.13b show the results of this method of sensitivity testing, where

each band represents a different value of either γE1E1 or γM1M1, while the width of

the band derives from allowing the other polarizabilities to vary. The clear separa-

tion of bands in Figure 1.11a compared to Figure 1.11b demonstrates the sensitivity

of the transverse target asymmetry to γE1E1. The opposite effect is seen in both

Figure 1.12a compared to Figure 1.12b and Figure 1.13a compared to Figure 1.13b,

which demonstrate the sensitivity of the longitudinal target asymmetry and beam

asymmetry to γM1M1 A more detailed study of these sensitivities is provided in Ap-

pendix A, where the case for this set of experiments was made based not just on this

ability to distinguish between the bands of different polarizabilities, but in running

a full χ2 fit with all of the expected data and extracting all four spin polarizabilities

both with and without the use of additional constraints.
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Figure 1.11: Theoretical Compton scattering asymmetries with a transversely polar-
ized target and a circularly polarized photon beam. The bands represent the spread
about these values by varying α, β, γ0, and γπ by their errors.

 (deg)labθCompton 
0 20 40 60 80 100 120 140 160 180

2zΣ

0

0.2

0.4

0.6

0.8

1

 = -3.3
E1E1

γ
 = -4.3

E1E1
γ

 = -5.3
E1E1

γ

(a) Vary γE1E1, fix γM1M1

 (deg)labθCompton 
0 20 40 60 80 100 120 140 160 180

2zΣ

0

0.2

0.4

0.6

0.8

1

 = 3.9
M1M1

γ
 = 2.9

M1M1
γ

 = 1.9
M1M1

γ

(b) Fix γE1E1, vary γM1M1

Figure 1.12: Theoretical Compton scattering asymmetries with a longitudinally po-
larized target and a circularly polarized photon beam. The bands represent the spread
about these values by varying α, β, γ0, and γπ by their errors.
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Figure 1.13: Theoretical Compton scattering asymmetries with an unpolarized target
and a linearly polarized photon beam. The bands represent the spread about these
values by varying α, β, γ0, and γπ by their errors.
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CHAPTER 2

EXPERIMENT

The Mainz Microtron is a continuous wave (CW) electron accelerator located

at the Johannes Gutenberg University in Mainz, Germany. The facility is part of

the Institute for Nuclear Physics (Institut für Kernphysik, or KPH), and includes

four experimental halls: A1 (Electron Scattering), A2 (Tagged Photons), A4 (Parity

Violation), and X1 (X-rays).

Figure 2.1: MAMI facility floor-plan, with the various microtrons and experimental
halls[44]
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2.1 MAMI Accelerator

The accelerator is actually composed of four individual microtrons: three Race-

track Microtrons (RTMs) and one Harmonic Double Sided Microtron (HDSM), de-

scribed in subsection 2.1.3 and subsection 2.1.4, respectively. The initial injector

linac provides a 3.97 MeV electron beam which can be ramped up to 14.86 MeV with

RTM1, then up to 180 MeV with RTM2, then up to 883 MeV with RTM3, and finally

up to 1604 MeV with the HDSM.

2.1.1 History of MAMI

The design and construction of the facility started in 1975 with a goal of reaching

e− beam energies around 800 MeV. This was achieved in several stages, with the first

(MAMI-A1) beginning operation in March 1979 using RTM1 and a Van-de-Graff

injector. After some initial testing, experiments began taking data in November

1979. With the addition of RTM2 the second stage (MAMI-A2) ran from July 1983

until October 1987. The final upgrade of the original plan was the installation of

RTM3 between 1987 and 1990. At this time a need was also expressed for a better

injector with improved stability, resulting in the Van-de-Graff being replaced by a

3.97 MeV linac. This stage (MAMI-B) has been running since August 1990, with

the first experiment taking place in the A2 hall in April 1991. In 1999 the demand

arose to further increase the beam energy to 1.5 GeV. To maintain the integrity of the

well running facility, an upgrade was agreed upon that would minimize the impact by

utilizing already available space and performing a large component of the construction

in parallel with MAMI-B beam-time. The HDSM was then built in what had been

the X1 hall, allowing it to be closed off from the rest of the facility while beam was

delivered to the remaining halls. This final stage (MAMI-C) was brought on-line in

December 2006, with the first experiment taking place in the A1 hall in February

2007.[45]
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2.1.2 Polarized Source

In addition to an unpolarized beam produced with a simple thermionic electron

gun, MAMI can provide a polarized beam by striking a GaAsP (III-V semiconductor)

cathode with circularly polarized laser light, producing longitudinally polarized pho-

toelectrons. This process of optical pumping in solids was first noted in Si[46], and

later applied to GaAs[47][48]. The polarized light is provided by a pulsed Ti:Sapphire

laser. With an initial linear polarization, the light is converted into circularly polar-

ized light by way of a quarter-wave plate, a birefringent material with a specific

thickness that results in a 90◦ retardation of the phase for light transmitted along

one axis as opposed to light transmitted along the perpendicular axis. If the plane of

polarization of the incoming light is oriented at 45◦ with respect to the optical axis

of this material, the parallel and perpendicular components of the transmitted light

are equal, resulting in circular polarization. In the MAMI setup the quarter-wave

plate is in the form of a Pockels cell, where a flip of the voltage polarity across the

cell changes the optic axis of the material, thereby flipping both the helicity of the

transmitted laser light and the electron beam polarization between parallel and anti-

parallel. This is done with a frequency of approximately 1 Hz, which helps to reduce

systematic effects in the analysis.[49]

The polarization of the electron beam is measured with a Mott polarimeter, shown

in Figure 2.2.[50] The process is based on Mott scattering, where an asymmetry

between the ±ŷ directions is observed for an electron, traveling in the ẑ direction and

polarized in the ±x̂ direction, scattered from a thin gold foil.[52] Since the electron

beam is initially polarized in the direction of motion this measurement must occur

after a spin rotation. This is performed with a Wien filter which utilizes a magnetic

field perpendicular to an electric field, both of which are perpendicular to the beam

direction. Properly chosen fields produces the desired spin rotation without deflecting

the beam.[53]
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Figure 2.2: MAMI Mott polarimeter. The electron beam enters from the left, and
the scattered electrons (up or down) are bent by dipole magnets, contained in the
blue boxes, into detectors.[51]

2.1.3 Racetrack Microtron

A microtron is an accelerator that recirculates the beam through the same linac

multiple times. One version of this is the racetrack microtron (RTM), appropriately

named given its shape, as shown in Figure 2.3. An RTM consists of a single linac

Figure 2.3: Racetrack Microtron[54]

placed between two large dipole magnets. The magnetic field of the dipoles is chosen

such that the electrons from both the initial injection as well as each post-linac pass
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will bend 180◦ into one of many exit lines. From there the electrons travel into the

second dipole and again bend 180◦, following the same radius of curvature since the

magnetic field is the same as in the first dipole. The electrons therefore pass back into

the linac to be accelerated. The linac uses a radio frequency klystron to alternate

the potentials of a series of standing wave cavities, causing a well timed bunch of

electrons to accelerate in each section. The increase in energy of an electron through

the linac is given by Equation 2.1

∆E =
ec2B

2πνrf
(2.1)

where e is the electric charge, c is the speed of light, B is the magnetic field, and νrf

is the frequency of the klystrons (νrf = c/λrf = 2.45 GHz).[54] The values for the

three RTMs can be found in Table 2.1.

Accelerating a polarized electron beam this way, however, has the unfortunate ten-

dency to destroy the polarization. As the electrons pass through the dipole magnets

their spin will tend to precess about the magnetic field with a frequency proportional

to the cyclotron frequency. Another reason for the installation of the Wien filter

noted in subsection 2.1.2 was to ensure that the polarization is purely longitudinal

upon arrival in an experimental hall. By selecting a specific initial spin rotation angle,

determined by the desired final beam energy, the spin direction ends up parallel to the

beam direction after performing the known number of turns in each microtron.[53]

2.1.4 Harmonic Double Sided Microtron

RTM3 allows MAMI-B to reach electron energies of 883 MeV, which was suffi-

cient for this experiment, which only required an electron beam energy of 450 MeV. In

general, however, reaching 1.6 GeV posed challenges in addition to those noted in sub-

section 2.1.1. Each successive RTM is significantly larger, requiring larger magnetic

fields and/or larger dipole magnets to bend the more energetic beam appropriately.
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The field of RTM3 is already close to the upper limit of iron core magnets. So for

a 1.6 GeV beam a dipole magnet of the same strength would have to be 5.4 times

the size of an RTM3 dipole, which are already 450 metric tons (or tonnes) a piece.

Instead, a double sided microtron was constructed with an arrangement, as shown in

Figure 2.4, of two linacs and four dipole magnets. This setup requires each dipole to

bend the beam by only 45◦, thereby reducing the size them individually.[54]

Figure 2.4: Harmonic Double Sided Microtron[54]

RTM1 RTM2 RTM3 HDSM

Injection E (MeV) 3.97 14.86 180.0 855
Extraction E (MeV) 14.86 180.0 855 1508

Mag. Field (T) 0.1026 0.555 1.2842 1.53-0.95
∆E per Cycle (MeV) 0.599 3.24 7.5 16.58-13.66

Number of Cycles 18 51 90 43

Table 2.1: Microtron parameters

2.2 A2 (Tagged Photon) Hall

In the A2 hall, where this experiment was run, the electron beam passes through

a 10 µm copper foil, radiating Bremsstrahlung (German for ‘braking radiation’) pho-

tons with energies up to the initial electron beam energy. If the electron beam is
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longitudinally polarized, the radiated photon will be circularly polarized.[55] The

photon polarization is determined via QED by

Pγ = Pe
4EγEe − E2

γ

4E2
e − 4EγEe + 3E2

γ

(2.2)

where Eγ is the energy of the photon, and where Ee and Pe are the energy and

polarization of the electron beam, respectively.[56] For a 450 MeV electron beam, the

ratio of the photon to electron polarization is given by the curve in Figure 2.5. After
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Figure 2.5: Ratio of circular photon polarization to longitudinal electron polarization
for a 450 MeV electron beam

being produced, the photon continues straight through a lead collimator of variable

diameter (here chosen as 2.5 mm) while the electron enters the Glasgow Photon

Tagger.

2.2.1 Tagger

In the tagger the electron’s path is bent by a large dipole magnet, as shown in

Figure 2.6. The magnetic field is specifically chosen for the electron beam energy

such that the electrons that do not radiate passing through the foil are bent into a

beam dump. Those that do radiate lose energy in the process and will bend with
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a smaller radius of curvature, with most of them hitting a ladder of 353 plastic

scintillator detectors on the focal plane, as shown in Figure 2.6. Each scintillator

Figure 2.6: Glasgow photon tagger. After the electron beam enters from the left
and strikes the radiator, the Bremsstrahlung photon continues to the right, while the
electron is bent by the spectrometer magnet.[55]

is approximately 2 cm wide, 8cm long, 2 mm thick, and coupled to an individual

detector. The scintillators are overlapped and electronically paired, so that a ‘hit’

requires two sequential detectors to fire, reducing accidental events. Because of this

pairing there is then one fewer channel, for a total of 352. The specific channel hit

coincides with an electron energy (for a given magnetic field) which determines the

energy of the radiated, or tagged, photon through energy conservation.[57]

Eγ = Ee − Etagg (2.3)

The distribution of energies follows the expected Bremsstrahlung distribution, as

shown in Figure 2.7.
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Figure 2.7: Bremsstrahlung distribution of photon energies

2.2.2 Targets

After collimation, the Bremsstrahlung photon beam travels 8.25 m in the A2 hall

before striking a target. Two targets were utilized in this experiment, the polarized

butanol target, and a carbon target used for background subtraction.

2.2.2.1 Butanol Target

While polarization of electrons is relatively easy, polarization of protons is con-

siderably more difficult. With a 2.5 T magnet at a temperature of 1 K, proton

polarizations will only achieve about 0.25%, while electron polarizations will reach

about 92%. To obtain a highly polarized source of protons, this experiment utilizes

the process of Dynamic Nuclear Polarization (DNP). The simplistic, albeit incomplete

in this instance, description of DNP is given by the Solid-State Effect (SSE).[58] If

a target of protons surrounded by free radicals is placed in the same 2.5 T magnetic

field at a temperature of 1 K, the electron spins will align in the direction of the field.

If the target is then exposed to microwaves with a frequency of ν = νe − νp, where

νe and νp are the Larmor frequencies of electrons and protons respectively, spin-flips

between the electrons and protons will transfer the polarization to the protons over

time.[59] For 2.5 T the Larmor frequencies are
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νe =
µeB

πh̄
=

9.285× 10−24 J T−1 · 2.5 T

3.14 · 1.055× 10−34 J s
= 70.04 GHz (2.4)

νp =
µpB

πh̄
=

1.411× 10−26 J T · 2.5 T

3.14 · 1.055× 10−34 J s
= 106.4 MHz (2.5)

where µe and µp are the magnetic moments of the electron and proton, respectively.

The polarization of the proton can also be reversed by simply adjusting the frequency

to ν = νe + νp, thereby populating the other level in the hyperfine splitting.

To maintain this polarization the target would have to remain in the magnetic

field and be continuously pumped with microwaves, which is impractical for many

physics applications due to the large size of the polarizing magnet. To get around

this issue, the setup for this experiment uses a Frozen Spin Target (FST)[60], which

has a 3He/4He dilution refrigerator that can achieve temperatures of 25 mK, shown

in Figure 2.8. The target material, composed of beads of frozen butanol (C4H9OH)

Figure 2.8: Frozen Spin Target cryostat. The photon beam enters from the bottom
left and strikes the target in the red section at the top right.[61]

shown in Figure 2.9, is surrounded by a 3He/4He bath. It’s first cooled down to ap-
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(a) Butanol Beads (b) Target Holder

Figure 2.9: Butanol target. Butanol beads (left) are enclosed in the white holder
attached to the end of the target insert (right). The holes in the holder allow for the
flow of 3He/4He. Also visible (right) are the leads for the NMR coil.

proximately 0.2 K, and then inserted into the 2.5 T polarizing magnet. Microwaves

just above (or below) the electron Larmor frequency are pumped into the target, po-

larizing the protons. Once the desired (or maximum) nuclear polarization is reached,

the microwaves are turned off and the cryostat lowers the temperature to 25 mK,

‘freezing’ the spins in place. To help maintain the polarization as long as possible

a much smaller ‘holding coil’, located within the shells of the cryostat, is energized.

Although its field of 0.6 T is much weaker than the polarizing magnet, it’s sufficient

to achieve relaxation times on the order of 1000 hours, with maximum polarizations

above 90%.[61] To measure the target polarization a Nuclear Magnetic Resonance

(NMR) coil is placed close to the target material. Coupling between the spins of

the target and the coil itself affects the inductance of the coil when the frequency is

swept through the proton Larmor frequency. By measuring this effect both in thermal

equilibrium (a so called TE measurement) and in frozen spin mode, the polarization

of the protons can be determined. This is done at the beginning and end of each
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Figure 2.10: Frozen Spin Target. The dilution refrigerator is shown on the right with
the polarizing magnet (green) placed over its nose. Visible in the background is the
Crystal Ball detector system which is swapped with the polarizing magnet during
running.

polarization period, and by extrapolating between these two measurements the po-

larizations for each run can be determined based on the time they occurred during

this period. These measurements and the resulting table of polarization values were

handled by Sebastian Schrauf.

2.2.2.2 Carbon Target

Since the target is not a ‘simple’ proton target, the inclusion of carbon, oxygen,

and helium all contribute to the background in the experiment. In addition to the

background from pion photoproduction off of the proton (discussed in section 4.4),

this target allows for both coherent (interacting with the atom itself) and incoherent

(interacting, and knocking out, a proton from the atom) versions of Compton scatter-

ing and pion photoproduction off of these additional atoms. Separate runs were taken

with a specifically chosen carbon target, shown in Figure 2.11, to account for this.

The density and length chosen for the target matches its total number of nucleons
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Figure 2.11: Carbon foam target. With a density of 0.55 g/cc the total number of
nucleons in the carbon target matches the number of non-hydrogen nucleons in the
butanol target.

with the total number of ‘heavy’ (non-hydrogen) nucleons in the butanol target (plus

helium mixture). This was determined in the following way.

The length of the target cell is given as LT = 2.0 cm, and the butanol filling factor

is given as F = 0.6. From these, the effective length of butanol in the target can be

calculated by

LBu = LT × F = 2.0 cm× 0.6 = 1.2 cm (2.6)

and the effective length of the helium in the bath surrounding the target by

LHe = (LT × (1− F )) + 0.2 cm = (2.0 cm× 0.4) + 0.2 cm = 1.0 cm (2.7)

The extra 0.2 cm in the effective length of the helium in the target accounts for the ad-

ditional helium in the cryostat downstream of the target cell. Additional parameters

of the materials are given in Table 2.2.

Note that the number of nucleons for butanol has two numbers, 74 and 64. 74 is

the total number of nucleons per butanol molecule. However, only the non-hydrogen

nucleons are considered for the subtraction. Since butanol is C4H9OH, this gives 4
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Material ρ (density, g
cm3 ) M (molar mass, g

mol
) N (nucleons per unit)

Butanol 0.94 74.1 74 (64 non H)
Helium 0.14 4.0 4
Carbon 0.55 12.01 12

Table 2.2: Material parameters for butanol and carbon targets

carbon atoms (each with 12 nucleons) and 1 oxygen atom (with 16 nucleons), for a

total of 64 nucleons. The area number density (molar) of butanol in the target is

nBu =
LBu × ρBu ×NBu

MBu

=
1.2 cm× 0.94 g

cm3 × 64 nucleons

74.1 g
mol

= 0.97 mol (nucleons)
cm2

(2.8)

and the area number density (molar) of helium in the target is

nHe =
LHe × ρHe ×NHe

MHe

=
1.0 cm× 0.14 g

cm3 × 4 nucleons

4.0 g
mol

= 0.14 mol (nucleons)
cm2 (2.9)

The total area number density (molar) of the frozen spin target is then

n = nBu + nHe = 1.11 mol (nucleons)
cm2 (2.10)

and setting the area number density (molar) of the carbon target equal to this result,

the desired length of the carbon target is found from the reverse equation:

LC =
nC ×MC

ρC ×NC

=
1.11 mol (nucleons)

cm2 × 12.01 g
mol

0.55 g
cm3 × 12 nucleons

= 2.02 cm (2.11)

Since the length is only 1% larger than the length of the target cell this was

deemed an ideal choice for a background target, and the material (called PocoFoam)

was purchased from Poco Graphite.[62] The density of the carbon foam was also
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measured at MAMI with a result slightly below the expected value, at ρC = 0.53 g
cm3 .

Using this value the length should be

LC =
nC ×MC

ρC ×NC

=
1.11 mol (nucleons)

cm2 × 12.01 g
mol

0.53 g
cm3 × 12 nucleons

= 2.10 cm (2.12)

which is a 4% difference, approximately.

By matching the target nucleons this way, the carbon target runs can be subtracted

directly from the butanol target runs, after taking into account different running times

and beam currents. Since the carbon target is inserted into the same cryostat, the

subtraction also removes any contribution from the windows, and/or shells, of the

cryostat. Secondary interactions between the final state particles and the target

material they travel through also remain similar to those in the butanol target, as

the shape and density are comparable.

2.2.3 Detectors

When the photon beam strikes the target, a system of detectors is used to deter-

mine the final state particles. This system is shown in Figure 2.12, and is described

in the following sections.

2.2.3.1 Crystal Ball

The Crystal Ball (CB), shown in Figure 2.13, is a calorimeter that was constructed

at the Stanford Linear Accelerator (SLAC) in the 1970’s. Proposed in 1974, mere

months before the J/ψ was discovered, it ran at SLAC from 1974 until 1982, per-

forming many of the first measurements of the J/ψ. At this point it was moved to

DESY where it ran from 1982 until 1987 measuring bottom quarks, among other

things. After an eight year stint in storage it was put back into use at Brookhaven

measuring baryon resonances from 1995 until 2002, at which point it was moved to

its present location in the A2 hall at MAMI.[64] The CB is composed of 672 NaI
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Figure 2.12: Detector systems in the A2 hall. The spherical object shown is the
Crystal Ball (with the target cell, particle identification detectors, and multiwire
proportional chambers shown in the cutout). The plane of cylinders is the Two Arms
Photon Spectrometer.

crystals optically coupled to individual photo-multiplier (PMT) tubes. Each crystal

is, however, optically decoupled from one another.

Each crystal, as shown in Figure 2.14, is a 40.6 cm long truncated triangular

pyramid. The triangular sides at the top of the pyramid (inner surface of the detector)

are 5.1 cm wide and at the bottom of the pyramid (outer surface of the detector) are

12.7 cm wide. A group of nine crystals form a minor triangle, a group of four minor

triangles form a major triangle, and twenty major triangles form an icosahedron.

This segmentation is shown in Figure 2.15 and Figure 2.16. The CB covers a polar

angular range of 21◦ to 159◦, and almost the entire azimuthal angular range except

for a small section between the two separate hemispheres of the CB. It provides an

energy resolution of 3-4% within the region of interest, a polar angular resolution
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Figure 2.13: Crystal Ball NaI detector. The detector is shown in its frame along with
attendant photomultiplier tubes (PMTs) but without cables.[63]

5.1 cm

40.6 cm

12.7 cm

Figure 2.14: NaI crystal

of 3◦, and an azimuthal angular resolution equal to the polar resolution divided by

sinθ.[65]

Three additional detectors located in the beamline bore of the CB, a particle

identification detector (PID) and two multiwire proportional chambers (MWPCs),
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Figure 2.15: Crystal Ball major segmentation. The blue and red spots represent the
sections that were removed for the incoming and outgoing photon beams, respectively.
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Figure 2.16: Crystal Ball minor segmentation. The green triangle separates the four
minor triangles, and the black triangles separate each individual crystal.

are used for charged particle detection. As it’s useful to describe these as all part of

one system, in the future ‘NaI’ will refer specifically to the Crystal Ball NaI detectors,

whereas ‘CB’ will refer to the collection of NaI, PID, and MWPCs.

2.2.3.2 PID

The PID, as shown in Figure 2.17, is a group of 24 plastic scintillator paddles, 500

mm long, 15.3 mm wide, and 4 mm thick, arranged in a cylinder parallel to the beam

37



with an inner diameter of 116.5 mm. Each detector therefore subtends 15◦ in φ, and

15.3 mm

500 mm

Figure 2.17: PID

covers a slightly larger polar angular range than the NaI (15◦ to 159◦). The small

thickness of the PID causes a charged particle to deposit a small amount of energy,

∆E, in it before depositing its remaining energy, E, in the NaI. Since electrons and,

for the most part, charged pions are minimally ionizing in the PID, they deposit a

rather consistent amount of energy. A proton, however, tends to lose more energy in

the PID, especially at lower kinetic energies. Using these two values a ∆E/E plot, like

that shown in Figure 2.18, allows for separation of electrons, protons, and charged

pions.[57]

2.2.3.3 MWPC

The MWPCs are examples of gas-ionization detectors. They each have a layer of

anode wires (parallel to the beam) suspended between two layers of cathode strips

(where the strips in each layer are spiraled around, in opposite directions, at a 44.23◦

angle with respect to the wires, or 88.46◦ with respect to each other). Figure 2.19 and
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Figure 2.18: PID ∆E vs CB (NaI) E. The proton events result in a ‘banana’ shape
upon which the black line defines the proton cut. The red section below this shows
the charged pion events, and the smaller clump near the origin shows the electron
events.

Figure 2.20 depict this design. A voltage is applied between the anodes and cathodes,

and a gas mixture which ionizes during the passage of a charged particle is pumped

into the system. The ionization electrons/holes then drift to the anodes/cathodes,

changing the voltage between them and providing the signal that is read out. The

inner wire chamber has 232 wires, 69 inner strips, and 77 outer strips. The outer wire

chamber has 296 wires, 89 inner strips, and 97 outer strips.[66]

Figure 2.19: Model of an MWPC, showing the inner cathode layer and the layer of
anode wires surrounding it.
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Figure 2.20: Model of an MWPC, showing the two cathode layers sandwiching the
layer of anode wires.

2.2.3.4 TAPS

While the loss of detection at backward angles is unavoidable due to the require-

ments of the frozen spin target, the ‘hole’ in the CB at forward angles is partially dealt

with. A version of the Two Arms Photon Spectrometer (TAPS) is placed downstream

of the CB (approximately 1.8 m from target center to detector center), providing an-

gular coverage forward of 20◦, with only a small hole for the photon beam. The

detector consists of 366 BaF2 crystals, each of which is a 22.5cm long hexagonal

polyhedron with an inner diameter of 5.9cm, as shown in Figure 2.21. An additional

18 BaF2 crystals in the two innermost rings of TAPS were previously replaced with

72 PbWO4 crystals. This served several purposes, one of which was to improve the

angular resolution for very forward-going events. The other purpose was to improve

their capabilities in a high rate environment dominated by atomic Compton scatter-

ing. This was achieved both by reducing the rate in each detector, and improving

the relaxation time by a factor of 100 (from 620 to 6 ns). For this experiment, how-

ever, since the PbWO4 crystals are outside of the useful kinematic range for Compton

scattering, and due to the high counting still experienced, they are not utilized in the

analysis. In general, TAPS has an angular resolution of approximately 0.7◦ and a

similar energy resolution to that of the NaI.[67]
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5.9 cm

22.5 cm

2.5 cm

Figure 2.21: BaF2 crystal

Each crystal of TAPS has a 5mm thick plastic scintillator paddle in front of it that

provides both veto and particle identification abilities. Similar to the PID, a charged

particle will deposit some portion of its energy, ∆E, in the paddle before depositing

its remaining energy, E, in the BaF2 crystals. Each plastic scintillator is individually

read out by a wavelength shifting fiber coupled to a PMT, which allows for a direct

correlation between a hit in a paddle and a hit in a BaF2 crystal. Besides tagging the

event as charged, and possibly vetoing it, plotting ∆E/E allows for proton selection

as done for the NaI and PID. Such a plot is shown in Figure 2.23. Similar to the

CB, for the future ‘TAPS’ will refer to the collection of BaF2, PbWO4, and the veto

paddles.

Given the greater distance from the target to TAPS, as compared to the CB, the

detection of a proton can also be checked by measuring the time-of-flight (TOF). As

will be discussed in subsection 2.3.2, the event time is started by a trigger in the CB.

41



A
01

23

45

67

89

1012

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

B

7374

75767778

7980 8182

8384
85

86
87

88
89

90
91

92
93

94
95

96

97
98

99
100

101
102

103
104

105
106

107
108

109

110
111

112
113

114
115

116
117

118
119

120
121

122
123

124
125

126

127
128

129
130

131
132

133
134

135
136

137
138

139
140

141
142

143
144

145
C

146147

148149

150151

152153

154155

156157

158
159

160

161
162

163
164

165
166

167
168

169

170
171

172
173

174
175

176
177

178
179

180
181

182

183
184

185
186

187
188

189
190

191
192

193
194

195
196

197
198

199

200
201

202
203

204
205

206
207

208
209

210
211

212
213

214
215

216
217

218

D
219220

221222 223224

225226

227228

229230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

E

292293

294295

296297

298299

300301

302303
304

305
306

307
308

309
310

311
312

313
314

315

316
317

318
319

320
321

322
323

324
325

326
327

328

329
330

331
332

333
334

335
336

337
338

339
340

341
342

343
344

345

346
347

348
349

350
351

352
353

354
355

356
357

358
359

360
361

362
363

364

F

365366

367368

369370

371372373374

375376

377
378

379

380
381

382
383

384
385

386
387

388

389
390

391
392

393
394

395
396

397
398

399
400

401

402
403

404
405

406
407

408
409

410
411

412
413

414
415

416
417

418

419
420

421
422

423
424

425
426

427
428

429
430

431
432

433
434

435
436

437

Figure 2.22: TAPS segmentation. This is shown as viewed from behind TAPS (looking
towards the target).[63]

With π0 photoproduction for example, one of the π0 decay photons could be detected

in the CB, starting the time. If the other decay photon is detected in TAPS, the

difference between these two times will be unresolvable. If instead the recoil proton

is detected in TAPS, this difference will be noticeably longer due to the proton’s

mass. This TOF, which also becomes larger for protons (or neutrons) of lower kinetic

energy, is plotted as a function of the detected energy as shown in Figure 2.24. If

desired, a cut is applied to this distribution to select those particles that are more

characteristic of nucleons. This is especially useful (albeit not for this experiment)

for distinguishing neutrons from photons.
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Figure 2.23: TAPS ∆E vs E. The proton events again result in a ‘banana’ shape upon
which the black line defines the proton cut.

Figure 2.24: TAPS Time-of-Flight. The proton events are the secondary peak just
above the electron events, where the black line again defines the proton cut.

2.2.3.5 Cherenkov

Additionally, a gas Cherenkov detector is installed between the CB and TAPS.

This simple detector contains a gas mixture that emits Cherenkov radiation with the

passage of a highly energetic charged particle, here almost exclusively electrons. This

can then serve as a veto for TAPS, allowing for the elimination of electrons originating

from pair production.
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2.3 Data Acquisition

The signals from the PMTs attached to each detector scintillator must be con-

verted into useful information for the experiment. This process is performed by a

complex Data Acquisition (DAQ) system outlined here.

2.3.1 General Concepts

In general a DAQ system in nuclear physics will split the analog signal output

from a detector into two branches, the first of which is used to both create a trigger

for the event and be analyzed for timing information, and the second of which is

analyzed for energy information. The first branch usually runs the analog signal

through a discriminator which outputs a square pulse (of adjustable width) if the

input is of sufficient height. This removes both electronic noise and events below the

energy of interest. The output from the discriminator is then split again, with one line

being combined with other detectors in the desired trigger design. The second line

from the discriminator typically leads into a Time-to-Digital Converter (TDC), which

compares the arrival time of the pulse to a reference pulse provided by the trigger, and

assigns a digital number corresponding to this time difference. Typically the energy

information is obtained by sending the second branch of the analog output from a

PMT into an Analog-to-Digital Converter (ADC), which assigns a digital number

corresponding to the size (either amplitude or integral) of the analog signal. The

trigger must also be fed into the ADC in some way to instruct it when to analyze the

analog signal.

2.3.2 Esum Trigger

The MAMI A2 system, while more complicated as shown in Figure 2.25, still

derives from these basic concepts. The analog outputs from the Crystal Ball NaI

PMTs are sent into Uppsala modules, which provide active fan-in/fan-out splitting,

in batches of 16. In addition to splitting the signal for the energy and timing/trigger
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Figure 2.25: Front end of trigger[63]
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branches, the module also sums the 16 analog signals into one. The summed signals

are daisy-chained together for all 42 modules, providing one analog signal representing

the total energy deposition in the NaI, and is therefore called the CB Energy Sum

(Esum). This signal, in addition to being analyzed in its own ADC channel, is split and

run into two discriminators. The first has a high threshold programmed into it which

defines a first level trigger. For this experiment the trigger was set for Esum > 100

MeV, thereby rejecting any event that did not deposit at least 100 MeV into the NaI.

The second discriminator has a low threshold of a few MeV, to improve the timing

of the Esum trigger. The outputs of both discriminators are put into a logical AND,

the output of which is then used as the first level trigger signal. For this experiment

this is the only trigger requirement.

2.3.3 Multiplicity Trigger

The A2 system also has the ability for more complicated second level triggers. The

timing/trigger branch outputs of the Uppsala module, as described in subsection 2.3.1,

are fed into another dual threshold discriminator. The low threshold lines are sent into

individual TDC channels for each detector to be analyzed. The high threshold lines

are fanned-in together for all 42 Uppsala modules, along with similar signals from the

six sectors of TAPS. The number of these 48 ‘clusters’ above threshold then forms a

‘multiplicity’ number, and the second level trigger can require this multiplicity to be

above a specified amount. For this experiment it was desired to run with the simple

Esum trigger, accepting events with any multiplicity. The overall master trigger is

shown in Figure 2.26, with details provided in [57] and [68].

2.3.4 Detector Readout

When an event satisfies the required trigger conditions all of the various ADC

and TDCs must be read out. Different components of the A2 system perform this

function in varying ways.
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The timing signals for the Tagger, NaI, PID, and MWPC wires are all read into

CATCH (Compass, Accumulation, Transfer and Control Hardware) TDCs, which

were originally designed for use in COMPASS. These TDCs do not use a start or

stop signal, but instead have a constantly running internal ≈ 8.55 GHz oscillator. All

of the CATCH TDCs have their oscillators synchronized through a Trigger Control

System (TCS), designed at CERN. This allows an entire batch of these modules to

have one reference TDC that the trigger is read into, providing a reference count of

the oscillator. When a timing signal from a PMT is read into its own TDC channel,

the oscillator count is stored in the buffer. The time of that hit is then simply the

difference between the count in that TDC and the count in the reference TDC, divided

by the oscillator frequency (which gives ≈ 117 ps/count). Both the Tagger and the

entire CB system have their own reference TDC channels, allowing a check between

them to verify that they are still synchronized. Additionally, the Cherenkov detector

timing is analyzed by a CATCH TDC, while its energy is analyzed with a standard

ADC.

The analog output from the Tagger is not used for an energy measurement, since

the electron energy is determined by which detector it hit along the focal plane.

The PID is read out into traditional ADCs. The NaI and MWPC strips detectors,

however, are read into Sampling ADCs (SADCs). These SADCs sample the inputs

at a rate of 40 MHz and maintain a buffer of these samples for 2 µs. They were set to

automatically integrate three different regions of each sample: a section before a pulse,

the majority of the pulse itself, and a section of the pulse tail. The combination of

the first two provides automatic pedestal suppression, by removing the baseline from

the peak and requiring the remaining signal to be above threshold. The combination

of the second two checks for potential pile-up, where two separate events end up in

the same sample.
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The timing and energy information for TAPS is analyzed through standard TDCs

and ADCs. However, a benefit to BaF2 is the ability to perform Pulse Shape Anal-

ysis (PSA). This process makes use of the response of a BaF2 crystal to different

radiation. The scintillation light from BaF2 has both a fast and a slow component

to the response, with decay times of 0.6 ns and 630 ns, respectively. By integrating

the signal over two different lengths of time, defined by the gate to the ADC, both

components can be measured. The ratio between them is indicative of the particle

detected.[69] This will be discussed in more detail in subsubsection 3.2.3.2.

2.3.5 Scalers

When an event passes the specified trigger requirements the system is set to ‘busy’,

refusing any further information from the ADCs and TDCs, so that it can digitize

and export the information to the main DAQ computer, and from there to a hard

disk for storage. This leads to an amount of ‘dead time’ where the system is unable to

recognize relevant events. To account for this, additional logic outputs from various

discriminators are sent into ‘scaler’ modules, which simply count the number of pulses.

With only a few exceptions, these modules are not inhibited while the system is

digitizing, providing a complete number of hits in a detector element or total possible

triggers to the system. One of the exceptions to this rule is to have a trigger signal

that is inhibited by the system busy run into its own scaler. A comparison between

the inhibited and uninhibited trigger scalers provides a measurement of the ‘live time’

(or dead time subtracted from unity) of the system.
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Figure 2.26: Trigger[63]
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CHAPTER 3

DATA RECONSTRUCTION

The various detector systems and their corresponding electronics produce event

information that is recorded, and later analyzed, by a program named AcquRoot.

This program is a set of C++ classes built on top of the ROOT system developed

by CERN. For each event, AcquRoot returns a set of ‘particles’ with pertinent infor-

mation such as particle type, kinetic energy, momentum, invariant mass, timing, and

detector(s) and crystal(s) hit. From this set the specific type of desired event can be

chosen with the appropriate selection criteria.

3.1 Software

3.1.1 ROOT

ROOT is an object-oriented data analysis framework developed at CERN in the

mid 1990’s. Led by Ren Brun and Fons Rademakers, who felt that the increasing

processing requirements for the large quantity of data being taken was exceeding

the old method of PAW and HBOOK, they sought to upgrade from FORTRAN

libraries and procedure-oriented programming to C++ libraries and object-oriented

programming. Since 1995 ROOT has grown to now be used by practically every

nuclear and particle physics group, as well as countless others.

3.1.2 AcquRoot

AcquRoot is a framework built upon ROOT, providing many additional classes

that interface with detectors to take and analyze data. It replaces the older ACQU
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which, first written in 1988 by John Annand of the University of Glasgow, interfaced

with HBOOK. With the success and widespread adoption of ROOT, AcquRoot was

initially conceived as an upgrade to ACQU, but has since become a powerful stand-

alone acquisition and analysis framework.

Before proceeding, an important note on the nomenclature used here, which carries

over from the previous chapter. An apparatus (the CB for instance) is a collection

of detectors (the NaI, PID, and MWPC in the case of the CB) that work together

to produce particle tracks. Each detector is a collection of similar elements (NaI

crystals, scintillator paddles, etc). Each element is individually read out with its own

ADC and TDC.

3.1.2.1 Analyze Hits

During the decoding of an event an analysis class (TA2UserAnalysis), which in-

herits from the TA2Analysis class, handles the collection of information from all of

the apparati and passes it into a physics class (TA2SpinPolPhysics), which inherits

from the TA2Physics class. Each apparatus has an individual class that inherits from

the TA2Apparatus class, and each of its constituent detectors also has an individual

class that inherits from the TA2Detector class. This is detailed in Table 3.1. The

physics class also inherits from the TA2Apparatus class, and can be considered a

super-apparatus. Each of the classes along this chain read in configuration files that

specify settings for the decoding and histogramming of data within that piece. For

instance, the TA2CalArray class has a configuration file that tells AcquRoot what

histograms to create for displaying NaI specific results, how many elements the NaI

detector has, where each is located, and what their parameters are.

As AcquRoot runs, the analysis class is passed an event from a data file; looks

at each element, in each detector, in each apparatus; and converts the digital output

of an ADC or TDC back into values for energy or time through Equation 3.1 and
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Analysis Apparatus Detector
(TA2Analysis) (TA2Apparatus) (TA2Detector)

Analysis
(TA2UserAnalysis)

CB
(TA2CentralApparatus)

NaI
(TA2CalArray)

PID
(TA2PlasticPID)

MWPC
(TA2CylMwpc)

TAPS
(TA2Taps)

BaF2

(TA2TAPS BaF2)
Veto

(TA2TAPS Veto)
Tagger Ladder

(TA2Tagger) (TA2Ladder)

Table 3.1: AcquRoot analysis classes

Equation 3.2 respectively.

E = S
[
G(C − P ) +Q(C − P )2

]
(3.1)

where S is a global scale factor, G is the gain, C is the ADC channel, P is the pedestal,

and Q is a quadratic factor.

T = G(C −O) +Q(C −O)2 (3.2)

where G is again the gain, C is the TDC channel, O is the offset, and Q is again a

quadratic factor. AcquRoot uses specific lines (usually denoted as ‘Element’) in the

detectors’ configuration file to set these calibration parameters for each element. An

example is given in Table 3.2, with a corresponding description.

There are some deviations from this standard however. For the PID the positions

are given in spherical coordinates r (mm), θ (deg), and φ (deg). The MWPC typi-

cally excludes the positions given its complicated geometry. For the tagger there are

three additional parameters that set the central energy for the element, the overlap
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ADC

Num 3015M1 The physical ADC channel number to look at
Low 2.0 Low software threshold for the ADC (MeV)
High 2000.0 High software threshold for the ADC (MeV)
Ped 0.00 ADC pedestal (channel)
Gain 0.070606 ADC gain (MeV/channel)

TDC

Num 2032M0 The physical TDC channel number to look at
Low -400.0 Low software threshold for the TDC (ns)
High 850.0 High software threshold for the TDC (ns)
Off -2068.65 TDC offset (channel)

Gain 0.117710 TDC gain (ns/channel)

Pos
X 3.619 The x position of the element center (cm)
Y 45.214 The y position of the element center (cm)
Z 2.629 The z position of the element center (cm)

Table 3.2: Sample parameter line from a detector configuration file

in energy between adjacent elements, and the scaler channel number for that ele-

ment. Regardless, all of these factors are determined both through knowledge of the

hardware and through calibration, as will be discussed in section 3.2.

3.1.2.2 Determine Clusters

Due to the segmentation of the NaI and BaF2 detectors, photons typically deposit

energy through an electromagnetic shower that spans multiple elements. For a given

event the detector classes, as discussed in subsubsection 3.1.2.1, convert the ADC

and TDC channel information for an element into values for the energy and time of

the hit. These individual hits then need to be restructured into one correlated cluster

resulting from the detection of a single particle. The primary method of achieving

this is by iterating through the list of element hits and searching for neighboring

ones. Additional lines in the NaI and BaF2 detector configuration files give lists of

neighboring elements for each single element in the detector. An element in the NaI

typically has 12 defined neighbors as shown in Figure 3.1a, and an element in the

BaF2 typically has 6 defined neighbors as shown in Figure 3.1b.
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(a) NaI - 12 Neighbors (b) BaF2 - 6 Neighbors

Figure 3.1: Nearest neighbors of an element for clustering algorithm

The atypical cases for the NaI arise from the joining of the major triangles of the

icosahedron, as described in subsubsection 2.2.3.1. While in a flat space the points

of six triangles meet to fill the space, in an icosahedron the points of only five major

triangles meet to fill the space (imagine folding the major triangles, as shown in

Figure 2.15, to meet with each other). So each of the three points of each of the 20

major triangles essentially lose one neighbor, for a total of 11. The atypical cases for

the BaF2 arise when considering the PbWO4 crystals (refer again to Figure 2.22), of

which four fit in a space occupied by a single BaF2 crystal. However, the neighbors

are still based on the BaF2 spacing. So each neighboring group of PbWO4 crystals in

a single BaF2 space contributes three additional neighbors, as shown in Figure 3.2a.

The neighbors of a PbWO4 element itself follow the same pattern, but also include

the other three PbWO4 elements in its BaF2 space, as shown in Figure 3.2b.

Both of the TA2CalArray and TA2TAPS BaF2 classes inherit from another class

called TA2ClusterDetector, which performs the clustering algorithm utilizing the

read-in lists of neighboring elements. For each event the algorithm first scans through
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(a) BaF2 - 9 Neighbors (b) PbWO4 - 18 Neighbors

Figure 3.2: Nearest neighbors for clustering algorithm in TAPS when including the
PbWO4

all of the hits and sets the element with the maximum reported energy as the central

element of a cluster. The total energy of the cluster is the sum of the energy of the

central element and the energy of all neighboring elements, as shown in Equation 3.3.

The position of the cluster is set as the
√
E weighted average of the crystal positions,

as shown in Equation 3.4.

Etot =
∑
i

Ei (3.3)

~rtot =

∑
i

~ri
√
Ei∑

i

√
Ei

(3.4)

To deal with more energetic photons than this analysis treats (notably above η

threshold), where electromagnetic showers can extend beyond the nearest neighbors,

an extended search can also be performed. In addition to the nearest neighbors, the

algorithm looks for deposition in any other crystals within some specified distance

of any of the initial cluster crystals that reported a hit. These hits are then added
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to the initial cluster before the
√
E weighting is performed. This extended search

automatically takes place for the BaF2, but is an option for the NaI.

Once a cluster has been determined through either the initial or extended algo-

rithm, its total energy is compared to a software set threshold energy. If it’s above

this energy the cluster is accepted, all of the hits that contributed to the cluster are

removed from the list, the remaining hits are rescanned for the maximum energy, and

the process continues until all of the hits have been converted into clusters. Another

optional method can be employed at this point to search for split-offs, situations

where a single particle results in what appear to be multiple clusters, and attempt to

recombine the clusters into one primary cluster. This method was also not utilized

in this analysis.

3.1.2.3 Create Particle Tracks

Once the clustering method is complete the overarching apparatus class then

checks for correlations between hits/clusters in the constituent detectors, joining them

together into single particle tracks. For the CB there can be a correlation between

all three detectors, or any pair of the two. While older versions of the code required

a hit in the NaI in order to generate a track, Alexander Mushkarenkov wrote the

TA2CentralApparatus class to utilize tracks that never make it to the NaI, partly to

help with proton losses, as will be discussed in subsection 5.3.1. A correlation between

the NaI and PID requires both to be within some azimuthal range (usually ±15◦)

of each other, as shown in Figure 3.3. A correlation between the PID and MWPC

requires both to again be within some azimuthal range (usually ±50◦) of each other,

as shown in Figure 3.4. A correlation between the MWPC and NaI requires both to

be within some total angular range (usually ±20◦) of each other, as shown in Fig-

ure 3.5. A correlation of all three requires all three of these cases to be satisfied. The
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situation is simpler for TAPS, where a correlation requires that the Veto element hit

is directly in front of the cluster center.
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Figure 3.3: Phi correlation between NaI and PID tracks
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Figure 3.4: Phi correlation between PID and MWPC tracks

Once a track has been determined, all of its information (the detectors and their

elements hit, energy, time, direction, vertex, and expected mass) is passed into an

instance of the TA2Particle class. This class utilizes ROOT’s TLorentzVector class,

which allows for various four-momentum calculations, while adding in the ability to

store and recall the detector information.
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Figure 3.5: Angular correlation between NaI and MWPC tracks

3.1.3 Physics Class

After the creation of the particle tracks, the analysis class then passes this infor-

mation along to the physics class, which handles actual event selection. Various cuts

can be applied at this level depending on the requirements of the user. The main

analysis utilized here runs a minimal event selection initially, saving the output into a

ROOT TTree format to be further analyzed in another program (as will be discussed

in chapter 4). The reasoning behind this is processing time. While the AcquRoot

analysis of the full transverse target data takes over a week on the primary machine

used, the secondary analysis on the skimmed set of TTrees only takes roughly 14

hours. This helps prevent a full reanalysis of the data for only a minor change in the

event selection or histogramming.

One of the primary remaining tasks of the TA2SpinPolPhysics class is to sort

through the events and search for possible meson decays (in this case π0 → γγ). This

is done by constructing the two-gamma invariant mass, given by Equation 3.5, for

each pair of detected photons.

mγγ =
√
E2
γγ − ~p 2

γγ =
√

(Eγ1 + Eγ2)
2 − (~pγ1 + ~pγ2)

2 (3.5)
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If the pair of photons are the result of a π0 decay, then mγγ = mπ0 = 135 MeV. If

the value for mγγ satisfies the specified cut on the spectrum, the photons are tagged

as meson decay photons and their summed together four-momenta creates a new π0

TA2Particle.
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Figure 3.6: Two-gamma invariant mass spectrum. The obvious peak at 135 MeV
corresponds to the neutral pion mass.

The rather open-ended event selection performed here only checks to see if either

a) there was at least one neutral hit with no π0 or η meson reconstruction, or b) there

was a single π0 with no η meson reconstruction. In either case the TTree is filled

with branches containing information about the neutral, charged, and π0 particles

detected.

3.2 Calibrations

As discussed in subsection 3.1.2, the parameters for each element (see Table 3.2)

of each detector must be set in order to properly extract the data. Many of these

parameters are basically fixed for an experiment run. The ADC and TDC (and scaler

for the tagger) channel numbers do not change unless there is some reordering of the

electronics. The position values would only change if the detectors are physically

moved with respect to the target, which typically only occurs with a rotation in φ
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of the PID or a different z position of TAPS (for instance in the inclusion/exclusion

of the Cherenkov detector). The software threshold settings for both the ADC and

TDC can be adjusted as desired to reject hits that are outside the energy range of

interest (for the ADC) or the timing range of correlation (for the TDC).

The remaining parameters (ADC pedestal, ADC gain, TDC offset, and TDC

gain), if not fixed themselves, are determined through various calibration methods

that are outlined in the following sections. Unless otherwise noted in its section,

each calibration method was performed by the author using a system called CaLib.

Designed by the University of Basel group (notably Irakli Keshelashvili and Dominik

Werthmueller), CaLib uses an AcquRoot physics class called TA2MyCaLib to analyze

actual data files with a rough set of calibration parameters. Histograms produced

by this physics class are examined in CaLib with a Graphical User Interface (GUI)

macro, resulting in new calibration parameters. In some cases only a single pass is

needed, but in others the process is iterated multiple times, using the new calibration

parameters to re-analyze the data each time.

3.2.1 Tagger

The tagger apparatus (in this experiment) only includes one detector, often called

the ladder, so the term tagger will be used synonymously for both the apparatus and

the detector.

3.2.1.1 Tagger Time

The tagger TDCs all have a fixed TDC gain of 0.117 ns/channel. The TDC offsets

are adjusted on an element by element basis to eliminate differences in cable length

and other hardware timing. This results in uniformity in the reporting of an event

time regardless of which tagger element is hit. To determine this offset the tagger

element hit is plotted as a function of the difference between tagger time and TAPS

time, as shown in Figure 3.7a. Since the tagger is run at a high rate, there are many
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accidentals recorded for each event, leading to a large background beneath the tagger

time. By subtracting the TAPS time from this for a given event the timing peak can

be sharpened. The reason for using TAPS instead of the CB is the better timing

resolution of the former. This histogram is projected onto the x axis for each bin on

the y axis (individual tagger elements), and then fit with a Gaussian peak, as shown

in Figure 3.7b. The offset is found by taking the difference between the centroid of

the Gaussian fit and zero, and dividing by the gain. Note that since these histograms

(a) All elements (b) One element

Figure 3.7: Tagger TDC offset calibration
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Figure 3.8: Tagger timing peak calibration. The black and red lines show the results
before and after calibration, respectively.
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look at the tagger time minus TAPS time, the latter actually needs to be calibrated

first, as described later in subsubsection 3.2.3.1.

3.2.1.2 Tagger Energy

While the tagger ADCs are not calibrated, since they would not provide very

useful information, the additional parameter for the tagger of a central energy does

need calibration for a specific MAMI electron beam energy and tagging spectrometer

magnetic field. This energy calibration was performed by Duncan Middleton, first

by setting the magnetic field of the spectrometer to a standard setting for 450 MeV

running. Electron beams of various energies below this, all with very low current, were

then sent through the tagger without passing through a radiator first. The precision of

the MAMI electron beam energy allows the tagger elements to be calibrated through

this scanning method. Due to time requirements this was only performed on a small

range of energies, with the overall calibration using an extrapolation of this scan and

a program called ugcal.

3.2.2 Crystal Ball

The crystal ball apparatus is composed of three detectors: the NaI, PID, and

MWPC.

3.2.2.1 NaI Time

As with the tagger, the TDC gains for the NaI are all fixed at 0.117 ns/channel.

The TDC offsets are determined in a similar way, and for similar reasoning, as for

the tagger. The NaI element is plotted versus the difference in cluster time between

two hits in the CB, as shown in Figure 3.9a. This results in the histogram being filled

twice for each pair of hits, with the first element filled at its time minus the second

element’s time, and the second element filled at its time minus the first element’s

time. This method assumes that for correlated hits; be they a photon and proton from
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Compton scattering, two decay photons from π0 photoproduction, etc; the difference

in time between them should be zero. Since a proton’s time-of-flight to the NaI

is mostly indistinguishable from a photon this is a good approximation. However,

a requirement that the hits appear to be neutral (no correlated hit in the PID or

MWPC), helps to insure this assumption.

(a) All elements (b) One element

Figure 3.9: NaI TDC offset calibration
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Figure 3.10: NaI timing peak calibration. The black and red lines show the results
before and after calibration, respectively.
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3.2.2.2 NaI Energy

The NaI energy response is calibrated in two ways. Initially an 241Am9Be source,

which produces 4.438 MeV photons, was placed in the center of the CB. While the

high voltage for all of the NaI PMTs is provided by only four sources, each PMT

base has a small potentiometer to adjust the voltage supplied to the tube. These

potentiometers were adjusted until the responses from each crystal all resulted in

approximately the same reported ADC channel. The ADC pedestals for each element

were recorded, and hardware thresholds were set above this. Unfortunately, using the

NaI response to a 4.438 MeV photon to extrapolate out to several hundred MeV is not

practical. The ADC gains are therefore determined by using pion photoproduction,

γp→ π0p→ γγp, a kinematically overdetermined reaction. Looking at mγγ, as given

by Equation 3.5, a peak is expected at mγγ = mπ0 = 135 MeV.

For each pair of hits in the CB, the NaI element is plotted as a function of mγγ,

as shown in Figure 3.11a. As with the timing, each event fills the histogram twice,

once for each element. However, unlike with the timing, the value for mγγ is the same

for both. This can also be restricted to only neutral events where neither photon is

associated with a PID or MWPC hit. Since the value being plotted is dependent on

resulting from the two π0 decay photons, this restriction is even more important for

the energy calibration than the timing calibration. As noted in Equation 3.1, there

are two additional factors in the energy conversion, a quadratic factor and a global

scale factor. The quadratic factor can be utilized for very high beam energies, where

the expected linearity of the NaI no longer holds true. Once the linear gain has been

determined as described above, the quadratic gain can be calibrated with the CaLib

software by looking at γp → ηp → γγp. Since mγγ = mη = 548 MeV, this provides

a lever arm at higher energy than the π0. With this experiment being performed at

an end-point energy of 450 MeV, η production is unavailable and the quadratic term

is unnecessary. The global scale factor can be useful for adjusting an entire detector
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(a) All elements (b) One element

Figure 3.11: NaI ADC gain calibration
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Figure 3.12: NaI mγγ peak calibration. The black and red lines show the results
before and after calibration, respectively.

if an overall gain shift is observed between runs. It was preferred, however, to leave

this factor set to unity and simply recalibrate the detector after a gain shift.

As shown in Figure 3.13 the gains, and therefore the mγγ peak, can shift consid-

erably during a single beam-time. A blown fuse in the high voltage breakout for the

NaI occurred during the September 2010 beam-time. After repairing the problem

the high voltage was brought back to its original setting but the gains of those tubes

affected obviously did not return to their original values. To address shifts such as

this, the beam-times were divided into segments shown in Table 3.3.
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Figure 3.13: September 2010 NaI gain drifts. The various lines show when tagging
efficiency runs (green) and target re-polarizations (red) occurred, each of which cor-
responds to a dip in the gain. The blue line on the left depicts a downtime from
MAMI, and the one on the right depicts when the high voltage for a quarter of the
NaI briefly tripped.

Segment 1 Segment 2 Segment 3
Sep 2010 26639-27254 27255-27367
Jan 2011 35253-35295 35299-35335 35339-35472
Feb 2011 35532-35695 35698-35885 35887-36303

Table 3.3: NaI energy calibration segmentation of runs

3.2.2.3 PID Phi

As mentioned before, the position parameters for each element of each detector

should rarely change. The only position parameter that does occasionally change is

the orientation of the PID, which occurs if it is removed from the bore of the NaI

and later reinserted. For the PID to properly identify charged particles its align-

ment with respect to the NaI needs to be determined. The PID φ parameters are

obtained by plotting the PID element hit versus the φ of a NaI cluster hit (as shown

in Figure 3.15a) fitting a Gaussian to the projection for each element (as shown in
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Figure 3.14: NaI mγγ drift with respect to run number. Top is from September
2010, middle from January 2011, and bottom from February 2011. Left is before
calibrations and right is after calibrations.

Figure 3.15b), and then fitting a line to the centroids of each Gaussian as a function

of PID element.

3.2.2.4 PID Time

As with the tagger and NaI, the TDC gains for the PID are all fixed at 0.117

ns/channel. The TDC offsets are also determined in the same way as for the NaI,

although now clearly without the option for neutral events, by plotting PID element

versus the difference in time between two hits in the PID, as shown in Figure 3.16a.
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(a) All elements (b) One element

Figure 3.15: PID phi calibration

(a) All elements (b) One element

Figure 3.16: PID TDC offset calibration

3.2.2.5 PID Energy

Since the PID elements are only 4 mm thick, charged particles will typically

not deposit all of their energy in the PID. This makes a direct calibration difficult.

Simulation of energy deposition in both the PID and NaI for a range of proton energies

allows for a comparison between it and real data. With real data, the PID ADC

channel is plotted as a function of NaI cluster energy, for each PID element, as shown

in Figure 3.17a. As discussed previously, the top ‘banana’ shape is indicative of

proton detection. Projections of this histogram onto the y axis for various slices of

NaI cluster energy will therefore yield a double peak structure, where the higher ADC

channel results from protons in the ‘banana’, as shown in Figure 3.17b.
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(a) PID energy vs NaI energy (b) Projection

Figure 3.17: PID energy calibration

By plotting the centroid values of Gaussian fits to the proton peaks as a function

of the expected energy deposition in the PID from simulation, a linear relationship is

extracted for each PID element (as shown in Figure 3.18), returning both the pedestal

and the gain.
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Figure 3.18: PID energy calibration fit

3.2.3 TAPS

The TAPS apparatus is composed of two detectors: the BaF2/PbWO4 and Veto.

As noted before, the PbWO4 is not used in this analysis, but its calibration is identical

to the BaF2 and happens simultaneously.
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3.2.3.1 BaF2 Time

TDC gains for each beam-time were calibrated by Tigran Rostoyman. This is

done by incrementally inserting various cables of known length to increase the time

of the TDC stop signal. A small run is taken with each cable length, and then a

program called TAPSMaintain looks at the various runs to determine what the TDC

gain must be for each BaF2 element.

The TDC offsets are determined in an identical way to the NaI, where the BaF2

element hit versus the difference in cluster time between two hits in TAPS is plotted.

This can also be done requiring only neutral hits (no corresponding hit in the Veto).

(a) All elements (b) One element

Figure 3.19: BaF2 TDC offset calibration

The strange double peaking in each individual element, leading to a triple peak when

summing all the elements together, is likely due to some fraction of the elements

having an offset of about 2 ns, either positive or negative, from the norm. After

multiple iterations this effect is considerably reduced, but never removed, as seen in

Figure 3.20. For the purposes of this experiment the timing of TAPS is not very

important however. Given the Compton kinematics at a beam energy of 450 MeV,

the Compton scattered photon can only be detected in the CB, and it’s the timing

of this particle that’s of concern.
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Figure 3.20: BaF2 timing peak calibration. The black and red lines show the results
before and after calibration, respectively.

3.2.3.2 BaF2 Energy

Each BaF2 analog signal is fed into two different ADCs, one with a long and

one with a short integration gate (called Long Gate, or LG, and Short Gate, or

SG, respectively). The LG ADCs function the same as the NaI ADCs, in that they

integrate the entire analog signal. The SG ADCs make use of the Pulse Shape Analysis

(PSA) abilities of BaF2 where, as mentioned in subsection 2.3.4, the timing response

of the crystal is significantly different for photons and nucleons. With a shortened

integration gate, most of a photon response will be integrated, whereas only part of

a nucleon response will be. With two sets of ADCs come two separate calibration

methods for the gains. The pedestal calibrations are identical however, where the

raw ADC spectra are simply scanned through to find the pedestal.

LG ADC gains are calibrated similar to the NaI. The BaF2 element hit versus

mγγ is plotted for instances where either both photons are detected in TAPS or one

is detected in TAPS and one in the CB. Note that since the former involves two hits

in TAPS, each event fills the histogram twice, once for each element. Additionally

this can be restricted to only neutral events where neither photon is associated with
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(a) Long Gate (b) Short Gate

Figure 3.21: BaF2 ADC pedestal calibration

a Veto hit. The quadratic factor can also be determined similar to the NaI, but as

with that case it can not be, and was not, determined for these beam-times.

(a) All elements (b) One element

Figure 3.22: BaF2 LG ADC gain calibration

The BaF2 ADC gains were also segmented, as given in Table 3.4, to account for

gain shifts in this detector. Note that the September 2010 beam-time is segmented

Segment 1 Segment 2 Segment 3
Sep 2010 26639-26945 26946-27367
Jan 2011 35253-35472
Feb 2011 35532-35695 35698-35885 35887-36303

Table 3.4: BaF2 energy calibration segmentation of runs
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Figure 3.23: BaF2 mγγ peak calibration. The black and red lines show the results
before and after calibration, respectively.

differently than for the NaI, the January 2011 beam-time isn’t segmented at all, and

the February 2011 beam-time is segmented the same as for the NaI.

Given that the SG ADC is by definition leaving out some portion of the analog

spectrum, a direct calibration of it is not appropriate. Rather, its usefulness comes

about by comparing its response to that of the LG ADC. To this end, the SG ADC

gain is calibrated by comparing its output to that of the already calibrated LG ADC.

This is done by computing the PSA radius and PSA angle, given by Equation 3.6

and Equation 3.7.

rPSA =
√
E2

LG + E2
SG (3.6)

θPSA = tan−1(ESG/ELG) (3.7)

The PSA radius is then plotted as a function of PSA angle. For a photon, whose

response in BaF2 is relatively fast, the energy from the SG ADC will be very close to

the energy from the LG ADC. Therefore the PSA angle should be 45◦, especially at

higher energies. Protons on the other hand, especially at lower energies, will deviate

from this angle since a larger fraction of their analog signal will only be integrated in

the LG ADC. This effect is depicted in Figure 3.25a. Projecting this histogram onto
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Figure 3.24: BaF2 mγγ drift with respect to run number. Top is from September
2010, middle from January 2011, and bottom from February 2011. Left is before
calibrations and right is after calibrations.

the x axis from some minimum PSA radius up (to eliminate the background shown

below 100 MeV), the right hand peak can be fitted with a Gaussian and the SG ADC

gain adjusted to compensate.

3.2.3.3 Veto Correlation

Similar to the PID, it’s important to ensure that the positions of the Veto scintil-

lators are properly set to correlate with a BaF2 crystal downstream of it. A simple

check of this is done by plotting the BaF2 element hit versus the Veto element hit
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(a) rPSA vs θPSA (b) Projection

Figure 3.25: BaF2 SG ADC gain calibration

for any charged particle. If all the elements are both wired (to ADCs) and listed (in

the configuration files) in the correct order, there should be a one-to-one correspon-

dence. If a flip has occurred somewhere, the CaLib software will resolve this. For

these beam-times all of the veto elements are observed in the proper place.

3.2.3.4 Veto Time

The Veto TDC gains are all fixed at 0.05 ns/channel. The TDC offsets are deter-

mined in the exact same method as the PID, by plotting Veto element hit versus the

difference in time between two hits in the Veto.

(a) All elements (b) One element

Figure 3.26: Veto TDC offset calibration
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3.2.3.5 Veto Energy

Veto ADC pedestals are determined in the same way as for the BaF2. The ADC

gains are calibrated in a similar fashion to the PID, although since the pedestals are

determined separately the Veto energy (instead of channel) can be plotted versus

BaF2 cluster energy for each Veto element. This is compared to simulation for TAPS.

(a) Veto E vs BaF2 E (b) Projection

Figure 3.27: Veto energy calibration

3.2.4 Target Position

With the NaI properly calibrated it’s possible to check the position of the tar-

get with respect to the NaI. For each pair of neutral events that hit the NaI, mγγ

is calculated for various altered positions of the target center. This altered target

position is plotted versus its resulting mγγ, as in Figure 3.29a, and projections of this

for each target position bin are fitted with a Gaussian, as in Figure 3.28. The sigma

of the Gaussian fit, shown in Figure 3.29b, has its minimum value at the actual target

center, and increases on both sides of it. Plotting the sigma as a function of target

position, and then fitting this with a simple polynomial extracts a target position

value.
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(a) Shifted by 10 cm (b) Centered at 0 cm

Figure 3.28: Target position effect on mγγ

(a) All positions (b) Fit of widths vs z

Figure 3.29: Target position calibration

3.2.5 Cherenkov

Since the Cherenkov detector is a single element detector, its signal is run into

single ADC and TDC channels. It’s unnecessary to calibrate the ADC response as

the analysis simply looks for any events beyond the pedestal. The TDC calibration,

on the other hand, is useful as the vetoing capabilities of the Cherenkov are utilized

by determining the time between events in the Cherenkov and events in TAPS. Since

the Cherenkov uses one of the CATCH TDCs, its gain is again already known as

0.117 ns/channel. The TDC offset can be determined by simply plotting the time

difference between the Cherenkov and TAPS (after TAPS has been calibrated), and

working out Equation 3.2 to produce the peak at the desired spot, with zero being the
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obvious choice. This results in a TDC offset of 3285 channels. The various Cherenkov

distributions are shown in Figure 3.30. As can be seen in Figure 3.30d, there’s a clear

(a) ADC vs TDC (b) ADC

(c) TDC (d) Timing

Figure 3.30: Cherenkov distributions

coincidence peak centered at zero. A cut of ±5 ns from zero is applied to this value,

and if accepted this can be used to veto either the coincident hit or the entire event,

as will be described in subsection 4.1.2.
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CHAPTER 4

DATA ANALYSIS

As discussed in subsection 3.1.3, the output from AcquRoot consists of two ROOT

files for each data file. The first file contains a TTree which holds particle informa-

tion (momentum, energy, timing, etc.) on an event by event basis. The second file

contains the histograms produced by AcquRoot itself. While most of these are for

diagnostic purposes only, two of them are important for correctly combining the data

files together. The first histogram is the tagger accumulated scalers, where the scaler

counts for each tagger element for the entire run are recorded. By comparing the

counts in a tagger element between two different runs the differences in running time,

beam current, tagging efficiency, etc., can be accounted for. The second histogram

is the system live time, where the live time is periodically read into a scaler channel.

As the live time may drift between runs, especially if the beam current is changed,

this also needs to be accounted for to compare two different runs together.

These three pieces, the TTree and two histograms, are read in by a secondary

analysis code, written by the author. Since the transverse target data was taken with

both a positively and a negatively polarized target, as well as a carbon background

target, these data files are analyzed in separate passes and then combined together.

The code is detailed in the following sections describing the event selection and results

formation.
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4.1 Event Selection

As noted before, the usefulness of this second pass analysis is in the ability to

change settings that do not affect the track reconstruction of the main AcquRoot

program and quickly re-analyze the data. Some of these settings, and the reasoning

behind them, are:

• Size of tagged photon energy bins - While the tagger gives results for photons

between 125.8 and 418.8 MeV, the bins chosen for an analysis will obviously be

much smaller, with values dependent upon the physics of interest. For this anal-

ysis two sets of bins are analyzed, 272.73-303.32 MeV and 315.25-345.94 MeV

(rounded in notation to 273-303 and 315-346 MeV for most of the remainder of

this document).

• Size of Compton photon angle bins - Similar to the energy bins, the angular

range is broken into sections. Given the small cross section for Compton scat-

tering, 20◦ bins were chosen to provide enough statistics in each bin.

• Cluster acceptance threshold - As discussed in subsubsection 3.1.2.2, the cluster

threshold can be set to different values. For the initial pass, a low threshold of

5 MeV was chosen to accept more clusters. This is then raised in the secondary

analysis to 15 MeV to reject low energy noise and/or possible split-offs. A

higher threshold than 15 MeV would begin to noticeably decrease the statistics.

• Fiducial cuts in angular acceptance - Although in principle the CB and TAPS

combined covers the angular range of 2◦− 159◦, there are some regions that are

not as efficient, as shown in Figure 4.1. To clean up these edge effects three

fiducial cuts are made, 0− 6◦, 18− 25◦, and 150− 180◦. The cuts are shown in

Figure 4.2b.
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• Prompt and random timing windows - The high beam current run during this

experiment results in many accidental events in the tagger. Timing cuts are used

to subtract out these accidentals. This is discussed in more detail in section 4.2

• Particle number cuts - The inclusivity (or exclusivity) of the analysis can be

adjusted by allowing for events that contain more than the desired number of

particles. This is also discussed in more detail in section 4.2.

• Proton opening angle cut size - This is an actual kinematic cut to reject non-

Compton events. This is also discussed in more detail in section 4.2

(a) Neutral particle theta (b) Charged particle theta

Figure 4.1: Theta distribution for detected particles. In addition to the obvious hole
in the upstream end of the CB at 160◦, there’s a clear loss of efficiency between the
CB and TAPS at around 20◦.

4.1.1 File Comparison

The first part of the analysis reads in the scalers histogram, live time histogram,

and the target polarization for each run. The integral of the live time histogram is

divided by the number of entries to determine the average live time for that run. The

scalers histogram for that run is added to a total tagger scalers histogram for the

entire data-set (one each for the three positive and four negative target polarizations,

and one for the carbon background target). The scalers histogram is also multiplied
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(a) Without fiducial cuts (b) With fiducial cuts

Figure 4.2: Cross section of detectors, showing the establishment of fiducial cuts

by the target polarization for that run and added to a total polarization-weighted

scalers file. If the option to account for the live time is selected, the individual scalers

histogram from each run is multiplied by the average live time prior to being summed

to either the total scalers or the polarization weighted scalers histograms. Samples of

these two scaler histograms are shown in Figure 4.3. The importance of comparing

(a) Positive target (b) Negative target

Figure 4.3: Polarization weighted tagger scalers. These are shown in red along with
regular tagger scalers shown in black.

these histograms on a run by run basis is clear when plotting the integral of each as

a function of the run number. These plots are shown in Figure 4.4.

Once all of the files in a particular polarization data-set have been included, the

‘flux’ for a specific energy bin is determined by integrating the total scalers histogram
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(a) Positive target (b) Negative target

Figure 4.4: Total tagger scalers for each run

over that energy bin. A ratio of the positive target polarization flux over the negative

target polarization flux can then be used, if necessary, to scale the negative target

data-set to the positive target data-set. The positive and negative total histograms

are shown in Figure 4.5a. The ratio between them (for each tagger channel) is shown

in Figure 4.5b, along with lines denoting the two energy regions of interest (blue

for 273-303 MeV, and red for 315-346 MeV). Zooming in on the ratio histogram

(a) Positive (black) and negative (red) (b) Ratio of positive to negative scalers

Figure 4.5: Comparison between positive and negative data-sets

for the two energy bins gives a rough idea of the overall ratio for those bins, as

shown in Figure 4.6. The average target polarization is determined by integrating
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(a) Ratio 273-303 MeV (b) Ratio 315-346 MeV

Figure 4.6: Comparison between positive and negative data-sets, zoomed in

the polarization weighted total scalers histogram over that energy bin, and dividing

by the ‘flux’ for the same energy bin. This is shown in Figure 4.7.

(a) Positive (b) Negative

Figure 4.7: Average polarizations for data-sets

4.1.2 TTree Analysis

While the histograms are being summed together, the individual TTrees are in-

cluded into a larger collection called a TChain. This is the piece that undergoes the

event-selection component of the analysis.

The first task in examining the TTree is to check the integrity of the file. Occa-

sionally the DAQ system essentially freezes, with the TCS loosing synchronization

between the various detector systems. While it’s expected that analysis of ‘out of
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sync’ data would result in a very small number of background events, it’s an easy

enough problem to compensate for. The CB reference TDC can be subtracted from

the tagger reference TDC, and checked on an event-by-event basis. Examples of this

distribution for a file that remained in sync and a file that went out of sync are shown

in Figure 4.8. While these figures look the same, zooming in on the y-axis depicts

(a) In sync (b) Out of sync

Figure 4.8: Synchronization check

the difference, as shown in Figure 4.9. While the structure of the peak in the out of

sync file remains the same for the majority of the file, once it loses sync the timing

structure is completely lost, resulting in the events outside of the peak. A timing cut

on the peak in this timing difference can eliminate data taken after synchronization

is lost.

For each event the analysis loops through each of the neutral particles and rejects

it if its energy is below the cluster threshold chosen, or if it’s detected within one of the

fiducial cuts, or if it’s detected in TAPS in time with a hit in the Cherenkov detector

(if the Cherenkov detection is selected as a cut). If the neutral particle is rejected

for any of the above reasons it’s removed from the list and the number of neutral

particles is reduced by one. If the neutral was also part of a π0, as determined by

the reconstruction in AcquRoot, that π0 is also rejected and the number of accepted

pions is reduced by one. This process is illustrated in Figure 4.10.
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(a) In sync (b) Out of sync

Figure 4.9: Synchronization check, zoomed in

The analysis then also loops through each of the charged particles and rejects it

if its energy is below the cluster threshold chosen (unless it was detected in both the

PID and the MWPC), or if it’s detected within one of the fiducial cuts, or if it’s

detected in TAPS in time with a hit in the Cherenkov detector (if the Cherenkov

detection is selected as a cut). If the charged particle is rejected for any of the above

reasons it’s removed from the list and the number of charged particles is reduced

by one. If the decision is made to require proton identification specifically, it is also

rejected if none of the proton cuts established in AcquRoot were satisfied. This does

not, however, reduce the number of charged particles, which is important for selection

of Compton events as outlined below. This process is illustrated in Figure 4.11.

4.2 Compton Scattering

Once the various particle cuts as outlined previously have been performed, it must

be determined whether the event is to be considered a Compton scattering event. This

requires that:

• The number of accepted π0 is equal to zero

• The number of accepted neutral particles is one or more (or exactly one if an

exclusive cut on the number of neutral particles has been selected)
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Begin

n = # Neutrals # Accepted π0 = # π0

i = 0
j = 0

Get next neutral

Below threshold? Reject neutral

In fiducial? Cut on Cher?

In TAPS? Hit in Cher?

Accept neutral
j++

i++ Part of π0?

i < n Reject π0

# Accepted Neutrals = j # Accepted π0 −−

End

No

Yes

No

Yes

No

Yes

Yes

Yes

Yes

No

No

No

No

Yes

Figure 4.10: Neutral particle selection

• The number of accepted charged particles is one or more (or exactly one if an

exclusive cut on the number of charged particles has been selected)

• If desired, the event can be rejected if there was any correlated detection in the

Cherenkov.
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Begin

n = # Charged

i = 0
j = 0

Get next charged

Below threshold? In PID & MWPC?

Reject charged

In fiducial? Cut on Cher?

In TAPS? Hit in Cher?

j++

In Prot Cut? Use Prot Cut?

i < n Accept charged

# Accepted Charged = j i++

End

No

Yes

NoYes

No

Yes

No

Yes

Yes

Yes

No

No

No

Yes

Yes No

No

Yes

Figure 4.11: Charged particle selection

If the event passes these tests, it loops through all available neutral particles

(which will only be one if the exclusive cut on the number of neutral particles has

been selected). For each of these it loops through all available tagged photons, se-

lecting only those that lie within the energy regions desired. The time difference

between the tagged photon and the neutral particle is calculated, and depending on
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the timing windows specified this event is denoted as a prompt or random event.

The prompt/random structure in the tagged photon time spectrum is shown in Fig-

ure 4.12a and Figure 4.13a. As noted in subsubsection 3.2.1.1, this distribution is

sharpened by subtracting the time of a detected neutral particle in either the CB or

TAPS. This is shown in Figure 4.12b and Figure 4.13b.

(a) Tagger time (b) Tagger minus neutral time

Figure 4.12: Compton scattering timing spectra showing the prompt peak

(a) Tagger time (b) Tagger minus neutral time

Figure 4.13: Compton scattering timing spectra zoomed in on the prompt peak

The next step is to construct what’s called a ‘missing’ mass. This method is

often employed to account for an undetected final state particle. By knowing the

initial state (tagged photon and at rest proton) and detecting part of the final state

(scattered photon in the case of Compton scattering) the conservation rules can again
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be invoked to determine what the ‘missing’ particle must be. The missing mass is

therefore the invariant mass of this particle, and in this case should equal the mass

of a proton.

mmiss =
√
E2
miss − ~p 2

miss =
√

(Ei − Ef )2 − (~pi − ~pf )2

=
√

(Eγi +mp − Eγf )2 − (~pγi − ~pγf )2 (4.1)

−−−−−→
Compton

mp = 938.27 MeV (4.2)

This method proves to be useful even when the recoil proton is detected. Both the

CB and TAPS perform photon detection very well, with good energy and angular

resolution. Proton detection is more difficult, due to energy loss from the travel of

the massive particle to the detector, and to the different response of a detector to a

proton as opposed to a photon.

The values for the missing mass, Compton photon theta, and Compton photon

phi are then filled into one of eight histograms. The number ‘eight’ derives from there

being two sets of target polarization, each with two sets of beam helicity, each with

both a prompt and random histogram. Combined versions of these (the method of

which is described in chapter 6), for Compton theta of 100-120◦, are shown in Fig-

ure 4.14 and Figure 4.15. As shown (or rather not shown) in the figures there’s

a lack of a discernible peak at the proton mass of 938.27 MeV. It exists as little

more than a bump on a large increasing background, both from non-hydrogen nu-

cleons in the butanol target (as discussed in subsubsection 2.2.2.2), as well as from

π0 photoproduction masquerading as Compton scattering. This will be discussed in

detail in section 4.5. This background prompts the requirement of detecting the recoil

proton. Even suffering from energy losses, the direction of the proton is expected to

mostly maintain its integrity. Within the tagged photon loop, the program then loops

through all available charged particles (which will only be one if the exclusive cut on
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(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.14: Compton scattering with the positive transversely polarized butanol
target. Shown are the prompt and random missing mass distributions, as well as the
subtracted result.

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.15: Compton scattering with the negative transversely polarized butanol
target. Shown are the prompt and random missing mass distributions, as well as the
subtracted result.

the number of charged particles has been selected). If the requirement for satisfying

a proton identification cut previously rejected a given charged particle, it will not be

analyzed.

For each accepted proton a check requiring that it traveled in a direction similar

to the expected one (the direction of the ‘missing’ particle) is made. This is done by

determining the angle between the detected and missing particles, referred to as the

proton opening angle, as given by Equation 4.3.
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θOA = cos−1

 ~ppf · ( ~pγi − ~pγf )√
p2
pf

( ~pγi − ~pγf )
2

 (4.3)

Setting this opening angle cut to 10◦ significantly reduces the background in the miss-

ing mass spectra, as shown in Figure 4.16 and Figure 4.17. It’s clear that the opening

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.16: Compton scattering with the positive transversely polarized butanol
target, utilizing a 10◦ proton opening angle cut. Shown are the the prompt and
random missing mass distributions, as well as the subtracted result.

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.17: Compton scattering with the negative transversely polarized butanol
target, utilizing a 10◦ proton opening angle cut. Shown are the prompt and random
missing mass distributions, as well as the subtracted result.

angle cut significantly improves the spectra, pulling out a peak at the appropriate

position of 938.27 MeV. The validity of this particular value of the opening angle cut

is discussed in section 4.4 and in subsection 5.3.1.
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4.3 Carbon Background

Although the application of an opening angle cut on the proton improved the

results, there is clearly background remaining in the missing mass spectra. The next

obvious task is to remove any contribution from the non-hydrogen elements in the

butanol target. As described before, this is done by taking data on a similar setup

with the only difference being the use of a carbon target in place of the butanol beads.

With the specific selection of the carbon target, as detailed in subsubsection 2.2.2.2,

the expectation was that the analysis would be identical to that of the butanol target.

The analysis code passes the data through the same loops, using the same event

selection, and undergoing the same cuts. This results in missing mass spectra for

Compton-like events from the carbon target, as shown in Figure 4.18. To compare

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.18: Compton scattering with the carbon target. Shown are the prompt and
random missing mass distributions, as well as the subtracted result.

the butanol and carbon spectra, the carbon results have to be scaled by the ratio of the

overall butanol target running time to the overall carbon target running time. This

ratio can be constructed with the live time corrected tagger scalers as discussed in

subsection 4.1.1. Through analysis of π0 photoproduction, however, it was determined

that this scaling factor is actually insufficient to properly account for the carbon

background. As will be shown in section 4.4 and further discussed in subsection 5.2.1,

an additional scaling factor of 1.306 has been applied to all of the following carbon

93



subtraction spectra. Once they’ve been properly scaled, the carbon target spectra

can be subtracted directly from the butanol target spectra to give ‘proton’ target

spectra, as shown in Figure 4.19 and Figure 4.20.

(a) Positive (black) and carbon (red) (b) Subtracted

Figure 4.19: Compton scattering with both the positive transversely polarized butanol
target and the carbon target. Shown are the two together (after scaling the carbon)
and their subtraction.

(a) Negative (black) and carbon (red) (b) Subtracted

Figure 4.20: Compton scattering with both the negative transversely polarized bu-
tanol target and the carbon target. Shown are the two together (after scaling the
carbon) and their subtraction.

To mimic the butanol data analysis, the same proton opening angle cut is applied

to the carbon data analysis. So to compare to the butanol data where a 10◦ opening

angle cut was applied, the carbon data needs to be run with the same cut, reducing

the spectra to those shown in Figure 4.21. Comparing the carbon with the butanol
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(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.21: Compton scattering with the carbon target, utilizing a 10◦ proton open-
ing angle cut. Shown are both the prompt and random missing mass distributions,
as well as the subtracted result.

then gives Figure 4.22 and Figure 4.23.

(a) Positive (black) and carbon (red) (b) Subtracted

Figure 4.22: Compton scattering with both the positive transversely polarized butanol
target and the carbon target, utilizing a 10◦ proton opening angle cut. Shown are the
two together (after scaling the carbon) and their subtraction.

From these spectra it’s clear to see that without the opening angle cut a very

large portion of the background is due to scattering off of the carbon and oxygen

in the butanol target. Even with the subtraction though, an analysis without an

opening angle cut results in only a ‘shoulder’ where the Compton signal is expected.

After applying an opening angle cut, the contribution from the carbon background is

almost entirely removed.
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(a) Negative (black) and carbon (red) (b) Subtracted

Figure 4.23: Compton scattering with both the negative transversely polarized bu-
tanol target and the carbon target, utilizing a 10◦ proton opening angle cut. Shown
are the two together (after scaling the carbon) and their subtraction.

4.4 Pion Photoproduction

Even outside of calibrations, studying pion photoproduction in this Compton anal-

ysis provides useful information. Given its much larger cross section, which is about

100 times that of Compton in this energy range, it allows for quick checks in the

methodology of the analysis. For instance, pion photoproduction also exhibits double

polarization asymmetries. From investigation of these, it was determined that the

helicity bit in the data stream was reversed between September 2010 and February

2011. This flip was due to a simple reversal of cables on the accelerator control side,

since the ‘trigger’ for flipping the polarization of the electron beam actually comes

from a pulser on the A2 hall side.

Studying pion photoproduction is also helpful in determining the proton energy

losses and detection efficiencies (discussed in subsection 5.3.1) as well as attempting

to compensate for the remaining background in the Compton missing mass peaks

even after opening angle cuts and carbon subtraction has been utilized (discussed in

section 4.5)

The pion analysis runs similar to the Compton analysis. After performing the

same particle cuts as described in subsection 4.1.2, a check is made that the number
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of accepted reconstructed neutral pions is one or more (or exactly one if an exclusive

cut on the number of neutral pions has been selected). Then for the one pion, or

for each pion if the exclusive cut has not been selected, the analysis loops through

all available tagged photons, selecting only those that lie within the energy regions

desired. The time difference between the tagged photon and the pion is calculated, as

shown in Figure 4.24 and Figure 4.25, and depending on the timing windows specified

this event is denoted as a prompt or random event.

(a) Tagger time (b) Tagger minus pion time

Figure 4.24: Pion photoproduction timing spectra showing the prompt peak

(a) Tagger time (b) Tagger minus pion time

Figure 4.25: Pion photoproduction timing spectra zoomed in on the prompt peak

The missing mass, given in Equation 4.4, is then constructed similar to that for

Compton scattering. Note that this is a more inclusive selection than for Compton,
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since any number of neutral and charged particles could have been detected, as long

as there were two neutrals that combined to form a π0.

mmiss =
√
E2
miss − ~p 2

miss =
√

(Ei − Ef )2 − (~pi − ~pf )2

=
√

(Eγ +mp − Eγ1 − Eγ2)2 − (~pγ − ~pγ1 − ~pγ2)2 (4.4)

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.26: Pion photoproduction with the positive transversely polarized butanol
target. Shown are the prompt and random missing mass distributions, as well as the
subtracted result.

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.27: Pion photoproduction with the negative transversely polarized butanol
target. Shown are the prompt and random missing mass distributions, as well as the
subtracted result.
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(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.28: Pion photoproduction with the carbon target. Shown are the prompt
and random missing mass distributions, as well as the subtracted result.

As mentioned in section 4.3, the carbon scaling factor determined solely from the

running time and live time is clearly insufficient when examining Figure 4.29 and Fig-

ure 4.30. Both the lower and higher missing mass sides of the peak clearly have some

remaining background in them that appear to have roughly the same shape as the

carbon spectra. By scanning through additional scaling factors applied to the carbon

spectra, and looking for the best agreement, a more suitable value is determined.

This process will be discussed in more detail in subsection 5.2.1. The additional fac-

tor (multiplied by the factor determined through flux comparisons), results in greatly

improved subtracted spectra shown in Figure 4.31 and Figure 4.32. This factor, de-

termined to be 1.306 (or 1.234 for the 315-346 MeV bin), is used identically for the

Compton analysis, where low statistics prevent a similar undertaking.

4.5 Pion Photoproduction Background

Given the energy range being analyzed, the remaining background in the Comp-

ton missing mass distributions is expected to be the result of pion photoproduction

masquerading as Compton scattering. There are three primary ways that this could

occur:
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(a) Positive (black) and carbon (red) (b) Subtracted

Figure 4.29: Pion photoproduction with both the positive transversely polarized bu-
tanol target and the carbon target, utilizing the original carbon scaling factor. Shown
are the two together (after scaling the carbon) and their subtraction.

(a) Negative (black) and carbon (red) (b) Subtracted

Figure 4.30: Pion photoproduction with both the negative transversely polarized
butanol target and the carbon target, utilizing the original carbon scaling factor.
Shown are the two together (after scaling the carbon) and their subtraction.

• One of the decay photons is not detected

• The recoil proton is not detected and one of the decay photons is misidentified

as a charged particle

• The recoil proton and one of the decay photons is summed together as one

charged cluster
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(a) Positive (black) and carbon (red) (b) Subtracted

Figure 4.31: Pion photoproduction with both the positive transversely polarized bu-
tanol target and the carbon target, utilizing the adjusted carbon scaling factor. Shown
are the two together (after scaling the carbon) and their subtraction.

(a) Negative (black) and carbon (red) (b) Subtracted

Figure 4.32: Pion photoproduction with both the negative transversely polarized
butanol target and the carbon target, utilizing the adjusted carbon scaling factor.
Shown are the two together (after scaling the carbon) and their subtraction.

4.5.1 Lost Decay Photon

The first background possibility, of missing one of the decay photons, is due to

various losses of detection efficiency in the CB/TAPS system, notably after the es-

tablishment of the fiducial cuts shown in Figure 4.2b. These cuts provide (or expand)

holes in which one of the decay photons can escape detection. For instance, it’s very

possible for one of the decay photons to travel straight back upstream and appear as

a Compton event, as shown in Figure 4.33.
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(a) Compton (b) Pion

Figure 4.33: Cross section of detectors, drawn to scale, showing Compton-like pion
photoproduction events

The resulting missing mass from these events was computed with a simple Monte

Carlo of pion photoproduction events, with results shown in Figure 4.34 to Fig-

ure 4.36. In each case the missing mass is first plotted as a function of the angle

(a) All angles (b) 100-120◦

Figure 4.34: Monte Carlo pion photoproduction events where one of the decay photons
ends in the forward fiducial cut in TAPS

of the detected photon (which would be the mistaken Compton photon), and then

simply plotted for the same 100− 120◦ range as shown previously. The arc like shape

of these distributions arises from the kinematics of π0 photoproduction. Given its

three body nature, the decay photon traveling into each fiducial can have two ranges

of energy for a given angle of the detected decay photon. The more forward (or back-

ward) going the detected photon is, the more distinct the separation between these
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(a) All angles (b) 100-120◦

Figure 4.35: Monte Carlo pion photoproduction events where one of the decay photons
ends in the backward fiducial cut in the CB

two energy ranges is. The end of the arc that approaches 950 MeV indicates that

(a) All angles (b) 100-120◦

Figure 4.36: Monte Carlo pion photoproduction events where one of the decay photons
ends in the middle fiducial cut between the CB and TAPS

the lost decay photon was ‘soft’, taking away only a small amount of energy, leaving

the detected decay photon looking very similar to a Compton scattered photon. The

other end of the arc indicates that the lost decay photon was ‘hard’, taking much of

the final state energy with it.

To reduce some of these events, the same opening angle cut (10◦) can be applied

to the remaining photon and the recoil proton, resulting in Figure 4.37 to Figure 4.39.

While the opening angle cut does remove much of the higher missing mass component
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(a) All angles (b) 100-120◦

Figure 4.37: Monte Carlo pion photoproduction events where one of the decay photons
ends in the forward fiducial cut in TAPS, and the remaining photon and the recoil
proton satisfy the 10◦ opening angle cut

(a) All angles (b) 100-120◦

Figure 4.38: Monte Carlo pion photoproduction events where one of the decay photons
ends in the backward fiducial cut in the CB, and the remaining photon and the recoil
proton satisfy the 10◦ opening angle cut

for both the TAPS and CB/TAPS fiducial cases, it unfortunately leaves behind a large

amount of the CB fiducial case and the lower missing mass component for both the

TAPS and CB/TAPS fiducial cases. Given their proximity to the proton mass, and

therefore to a Compton signal, this is an important background to account for.

4.5.2 Lost Recoil Proton

The second background possibility, of missing the recoil proton and misidentifying

a decay photon as a charged particle, can come about in two different ways. Either
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(a) All angles (b) 100-120◦

Figure 4.39: Monte Carlo pion photoproduction events where one of the decay photons
ends in the middle fiducial cut between the CB and TAPS, and the remaining photon
and the recoil proton satisfy the 10◦ opening angle cut

the proton can be lost in the same way as for a decay photon, where it ends up in

a fiducial cut, or by suffering from enough energy loss that it never makes it to the

detector. This background also assumes that one of the decay photons is accidentally

tagged as a charged particle, the likelihood of which is an important question. For

simplicity this first pass assumes it does. The results are shown in Figure 4.40 to

Figure 4.42. In this situation there are no results for the proton ending up in the CB

(a) All angles (b) 100-120◦

Figure 4.40: Monte Carlo pion photoproduction events where the recoil proton ends
in the forward fiducial cut in TAPS

fiducial, since kinematically the proton must travel forward.
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(a) All angles (b) 100-120◦

Figure 4.41: Monte Carlo pion photoproduction events where the recoil proton ends
in the middle fiducial cut between the CB and TAPS

(a) All angles (b) 100-120◦

Figure 4.42: Monte Carlo pion photoproduction events where the proton is stopped

For these possibilities, applying the 10◦ opening angle cut between the two decay

photons significantly changes the results, as shown in Figure 4.43 to Figure 4.45. As

evidenced by this rough check, even if all instances of a proton being lost result in a

misidentified Compton event (despite the oddness of one of the decay photons being

tagged as a charged particle), the net effect is only about 7% of that from a lost decay

photon in the immediate region of interest around the Compton peak. This number

becomes even smaller at more forward Compton angles, or if integrating higher than

980 MeV (at which point the hole in the CB becomes important). An important

point to note here is that these quick analyses have no energy or angular smearing
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(a) All angles (b) 100-120◦

Figure 4.43: Monte Carlo pion photoproduction events where the recoil proton ends
in the forward fiducial cut in TAPS, and the decay photons satisfy the 10◦ opening
angle cut

(a) All angles (b) 100-120◦

Figure 4.44: Monte Carlo pion photoproduction events where the recoil proton ends
in the middle fiducial cut between the CB and TAPS, and the decay photons satisfy
the 10◦ opening angle cut

applied to them. A more detailed check will be done in the following chapter, but

this serves as a simple guide for the analysis.

4.5.3 Combined Decay Photon and Recoil Proton

The third background possibility, of a decay photon and the recoil proton being

detected in the same cluster, is also an unlikely process. A single cluster in the CB

subtends a cone with a half-angle of approximately 15◦. This requires that the angle

between a decay photon and the recoil proton be less than this value. Using the
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(a) All angles (b) 100-120◦

Figure 4.45: Monte Carlo pion photoproduction events where the proton is stopped,
and the decay photons satisfy the 10◦ opening angle cut

same rough checks as above, this angle is shown in Figure 4.46. Looking only at

(a) No opening angle cut (b) 10◦ opening angle cut

Figure 4.46: Monte Carlo pion photoproduction events showing the angle between
one of the decay photons and the recoil proton

events that are within this 15◦ cone, the missing mass distributions are shown in

Figure 4.47. Additionally requiring the 10◦ opening angle cut, the edited missing

mass distributions are shown in Figure 4.48. These events obviously pose something

of a problem since the signal, even after applying an opening angle cut, is in the

proper region with a strength approaching that of the first possibility investigated.

However a more detailed simulation will be necessary to examine this.
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(a) All angles (b) 100-120◦

Figure 4.47: Monte Carlo pion photoproduction events where one of the decay photons
and the recoil proton are within 15◦ of each other

(a) All angles (b) 100-120◦

Figure 4.48: Monte Carlo pion photoproduction events where one of the decay photons
and the recoil proton are within 15◦ of each other, and the other decay photon and
this cluster satisfy the 10◦ opening angle cut

4.5.4 Ring Analysis

There are two ways to handle the first problem noted, where one of the decay

photons is lost into a fiducial cut. It can either be studied in more detailed Monte

Carlo simulation (also discussed in chapter 5), or through an altered analysis of

the actual data. The benefit to using the real data is by minimizing the scaling

of the background needed before subtracting it out. This analysis, which will be

referred to as the ring analysis (for reasons that will be made clear momentarily) is

run simultaneously with the Compton analysis. The first step is to define angular
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regions close to each fiducial cut. These regions are then azimuthal rings in the

detectors (hence the name ‘ring analysis’), as depicted in Figure 4.49. The analysis

(a) Photon in fiducial cut (b) Photon in ring

Figure 4.49: Cross section of detectors, drawn to scale, showing construction of rings

looks for pion photoproduction events where one of the decay photons is detected

in one of the rings, as shown in Figure 4.49a. Kinematically these situations are

close to those where the decay photon is lost in the adjacent fiducial cut, as shown

in Figure 4.49b. By ignoring the photon detected in the ring, the remaining photon

and proton are analyzed as if they were a Compton event. The resulting missing

mass distributions can then be subtracted directly from the Compton distributions

to remove this background. To test this, the same basic Monte Carlo check can

look at these ring events and compare them to the lost fiducial events, as shown in

Figure 4.50 to Figure 4.52.

The ring analysis for the TAPS fiducial cut and for the CB/TAPS fiducial cut

both work quite well. The discrepancy in the ring analysis for the CB fiducial cut can

be explained by the large angular region of this fiducial (150-180◦). The kinematics

of the ring region are clearly different from those of the fiducial region. To account

for this, a scaling function is applied to the ‘Compton’ angle (the angle of the photon

NOT detected in the ring) to shift it into a more kinematically appropriate region.

This function is computed by first looking at the kinematics assuming the ring photon
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(a) All angles (b) 100-120◦, ring (black) and fiducial (red)

Figure 4.50: Monte Carlo pion photoproduction events where one of the decay photons
ends in the forward ring in TAPS, and the remaining photon and the recoil proton
satisfy the 10◦ opening angle cut

(a) All angles (b) 100-120◦, ring (black) and fiducial (red)

Figure 4.51: Monte Carlo pion photoproduction events where one of the decay photons
ends in the backward ring in the CB, and the remaining photon and the recoil proton
satisfy the 10◦ opening angle cut

instead went directly upstream at 180◦ (keeping the energy of the ‘Compton’ photon

fixed), and solving the quadratic equation

AE2
γ2

+BEγ2 + C = 0 (4.5)

for the energy of this upstream photon

Eγ2 =
−B +

√
B2 − 4AC

2A
(4.6)
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(a) All angles (b) 100-120◦, ring (black) and fiducial (red)

Figure 4.52: Monte Carlo pion photoproduction events where one of the decay photons
ends in the middle rings between the CB and TAPS, and the remaining photon and
the recoil proton satisfy the 10◦ opening angle cut

where the three coefficients are giving by:

A = 2Eγ +mp (4.7)

B = mpEγ1 + 2Eγ1Eγ −mpEγ −
m2
π0

2
(4.8)

C = −Eγm
2
π0

2
(4.9)

Having determined the energy of the ring-photon, the angle of the ‘Compton’ photon

can be calculated by

θ0 = cos−1

(
m2
π0

2Eγ1Eγ2
− 1

)
(4.10)

Using this, the actual detected angle of the ‘Compton’ photon is scaled with the

following function

θnew = θ0

[
1 +

(
s1

s2

)[
e
s2

(
θ−θ0
θ0

)
− e−s3

(
θ−θ0
θ0

)]]
(4.11)

where s1, s2, and s3, are energy (of the ‘Compton’ photon) dependent parameters

chosen to best match the ring with the fiducial results (from Monte Carlo). They are

given by the following equations:
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s1(Eγ1) = s1a + s1bEγ1 + s1cE
2
γ1

+ s1dE
3
γ1

(4.12)

s2(Eγ1) =
s2a

1 + e
−Eγ1−s2b

s2c

+ s2d (4.13)

s3(Eγ1) =
s3a

1 + e
−Eγ1−s3b

s3c

+ s3d (4.14)

where the parameters of these are constants given in Table 4.1. Applying this angular

a b c d
s1 0.1059 4.587× 10−3 −2.29× 10−5 4.067× 10−8

s2 7.314 195.2 19.23 6.846
s3 2.598 175.0 18.98 6.951

Table 4.1: Parameters for angle shifting in ring analysis

shift to the Monte Carlo results in Figure 4.53.

(a) All angles (b) 100-120◦, ring (black) and fiducial (red)

Figure 4.53: Monte Carlo pion photoproduction events where one of the decay pho-
tons ends in the backward ring in the CB, after applying an angular shift, and the
remaining photon and the recoil proton satisfy the 10◦ opening angle cut

To apply this methodology in the real analysis, a similar track to the Compton

analysis is followed. For each event the analysis checks if the number of accepted π0

is one, and if so it loops through each fiducial cut and takes the following steps.

• First an initial value for the CB energy sum is set to the experimental value.
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• The analysis then loops through each accepted neutral particle, and makes

several checks.

– If the neutral particle is part of the π0 and a neutral hasn’t already been

found for the ring associated with the current fiducial cut, it checks if the

neutral is in the ring.

– If the neutral is in the ring, and was detected in the CB, the energy sum

is reduced by its energy to reflect the trigger condition if the neutral had

instead entered the associated fiducial cut.

– If the energy sum is still above 100 MeV then the ring event is accepted,

and the neutral is tagged as such.

Once all fiducial cuts/rings have been checked over, the ring analysis (to again

mimic the Compton analysis) requires that:

• The number of accepted neutral particles is two or more (or exactly two if an

exclusive cut on the number of neutral particles has been selected)

• The number of accepted charged particles is one or more (or exactly one if an

exclusive cut on the number of charged particles has been selected)

• If desired, the event can be rejected if there was any correlated detection in the

Cherenkov.

For each accepted ring event the analysis first checks the accepted π0, and if

desired forces the two photon invariant mass to the π0 mass. It then loops over all

available neutral particles (which will only be two if the exclusive cut on the number

of neutral particles has been selected), skipping the one that resulted in a ring. For

each neutral it then loops over all available tagged photons, checking if it’s within a

desired energy bin. If so the difference in time between the tagged photon and the

neutral is calculated, determining if it’s a prompt or random event. The missing mass
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is first calculated looking at the full π0, which is important to first check that it is

a legitimate pion photoproduction event. The analysis then loops over all available

charged particles (which will only be one if the exclusive cut on the number of neutral

particles has been selected). The proton opening angle is also first calculated looking

at the full π0. Assuming it passes this check, the analysis then recalculates the proton

opening angle assuming the ring photon is lost (thereby appearing as a Compton

event), and checks that it satisfies the opening angle cut for Compton scattering. If

the current neutral particle being analyzed is the other decay photon, as opposed to

the one that was detected in a ring (which is the only case if the exclusive cut on

the number of neutral particles has been selected), the polar angle can be scaled to

adjust the kinematics. Finally the missing mass is recalculated, again assuming the

ring photon is lost, taking into account the possibly shifted photon angle.

The ring analysis produces the missing mass spectra shown in Figure 4.54 to Fig-

ure 4.68. Subtracting the three ring spectra, after completing the prompt/random

and carbon subtraction, gives the Compton missing mass spectra shown in Figure 4.69

and Figure 4.70, where this ring analysis method clearly produces reasonable results

similar to the rough Monte Carlo checks shown before. It eliminates a large portion

of the higher missing mass background in these spectra, while providing some back-

ground subtraction in the region of interest (around 950 MeV). To determine the

number of counts for each polarization to be used in calculating asymmetries, these

subtracted spectra are integrated up to a conservative upper limit of 940 MeV (just

above the proton mass). This reduces the likelihood of including similar π0 photo-

production events that have not been eliminated with the ring analysis. To improve

this limit there is a need to study these backgrounds in more depth with a detailed

simulation method. This will help to show if this ring method properly accounts for

the background and/or whether a more complete subtraction method can be found.

115



(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.54: TAPS ring analysis with the positive transversely polarized butanol
target. Shown are the prompt, random, and subtracted missing mass distributions.

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.55: TAPS ring analysis with the negative transversely polarized butanol
target. Shown are the prompt, random, and subtracted missing mass distributions.

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.56: TAPS ring analysis with the carbon target. Shown are the prompt,
random, and subtracted missing mass distributions.
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(a) Positive (black) and carbon (red) (b) Subtracted

Figure 4.57: TAPS ring analysis with both the positive transversely polarized butanol
target and the carbon target. Shown are the two together (after scaling the carbon)
and their subtraction.

(a) Negative (black) and carbon (red) (b) Subtracted

Figure 4.58: TAPS ring analysis with both the negative transversely polarized butanol
target and the carbon target. Shown are the two together (after scaling the carbon)
and their subtraction.
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(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.59: CB ring analysis with the positive transversely polarized butanol target.
Shown are the prompt, random, and subtracted missing mass distributions.

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.60: CB ring analysis with the negative transversely polarized butanol target.
Shown are the prompt, random, and subtracted missing mass distributions.

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.61: CB ring analysis with the carbon target. Shown are the prompt, random,
and subtracted missing mass distributions.
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(a) Positive (black) and carbon (red) (b) Subtracted

Figure 4.62: CB ring analysis with both the positive transversely polarized butanol
target and the carbon target. Shown are the two together (after scaling the carbon)
and their subtraction.

(a) Negative (black) and carbon (red) (b) Subtracted

Figure 4.63: CB ring analysis with both the negative transversely polarized butanol
target and the carbon target. Shown are the two together (after scaling the carbon)
and their subtraction.
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(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.64: CB/TAPS ring analysis with the positive transversely polarized butanol
target. Shown are the prompt, random, and subtracted missing mass distributions.

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.65: CB/TAPS ring analysis with the negative transversely polarized butanol
target. Shown are the prompt, random, and subtracted missing mass distributions.

(a) Prompt (black) and random (red) (b) Subtracted

Figure 4.66: CB/TAPS ring analysis with the carbon target. Shown are the prompt,
random, and subtracted missing mass distributions.
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(a) Positive (black) and carbon (red) (b) Subtracted

Figure 4.67: CB/TAPS ring analysis with both the positive transversely polarized
butanol target and the carbon target. Shown are the two together (after scaling the
carbon) and their subtraction.

(a) Negative (black) and carbon (red) (b) Subtracted

Figure 4.68: CB/TAPS ring analysis with both the negative transversely polarized
butanol target and the carbon target. Shown are the two together (after scaling the
carbon) and their subtraction.
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(a) Compton (black), TAPS ring (red), CB
ring (magenta), and CB/TAPS ring (green) (b) Subtracted

Figure 4.69: Compton scattering minus ring analysis for the positive transversely
polarized butanol target

(a) Compton (black), TAPS ring (red), CB
ring (magenta), and CB/TAPS ring (green) (b) Subtracted

Figure 4.70: Compton scattering minus ring analysis for the negative transversely
polarized butanol target
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CHAPTER 5

SIMULATION

In order to understand, and possibly account for, the additional background in

the missing mass spectra a more detailed simulation study is necessary. The pre-

vious Monte Carlo studies simply utilized an event generator EventGen, written by

the author, that uses theoretical cross sections to weight the throwing of events,

and for Compton scattering cross sections it utilizes the dispersion code of Barbara

Pasquini. For π0 photoproduction cross sections it utilizes either the MAID[70][71][72]

or SAID[73] database. While useful for a first pass analysis, EventGen does not take

into account interactions between the particles and the experimental setup resulting

in energy loss and/or multiple scattering in the Frozen Spin Target cryostat, as well

as the electromagnetic showers and energy smearing in the detectors themselves.

To study these effects the output from EventGen is passed into a Geant4[74][75][76]

simulation of the entire A2 system[77]. The A2 simulation outputs a TTree that is

read into AcquRoot which decodes and interprets it as real data. While Geant4

handles energy loss, multiple scattering, and electromagnetic showers, the energy

smearing needs to be applied on the AcquRoot side as this is a by product of both the

response of the detector material and the conversion of the signal in the electronics.

For the NaI and BaF2 the energy resolution is provided by the energy (in GeV)

dependent functions in Equation 5.1 and Equation 5.2 respectively.

∆ECB = 0.0204 GeV × (E/GeV)3/5 (5.1)

∆ETAPS = 0.015 GeV × (E/GeV)1/2 (5.2)
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5.1 Compton Scattering

The first simulation of interest is simple Compton scattering itself. By running

the full simulation on Compton scattering the expected missing mass spectra can be

generated and compared with the experimental version. It’s vital to know whether

the peak structure seen in the data is of a reasonable shape and width, to help justify

the integration limits used in determining the total number of events. This also helps

determine to what degree the tail of the peak is composed of background events. The

missing mass distribution from the simulation, for the 273-303 MeV tagged photon

energy bin, is shown in Figure 5.1, along with two different line shapes. A simple

(a) Gaussian (b) Double Gaussian

Figure 5.1: A2 simulation of Compton scattering, showing accompanying Gaussian
and double Gaussian fits

Gaussian shape, as given in Equation 5.3 (where h is the height, c is the centroid,

and w is the width of the peak), clearly doesn’t fit the Compton peak in Figure 5.1a

due to the tail on the higher missing mass side.

y = he−
1
2(x−cw )

2

(5.3)

This can be better fit with a combination of two Gaussians, as shown in Figure 5.1b.

Rather than having two floating Gaussians however, it’s beneficial to connect the two

together with
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y = h

[
e−

1
2(x−cwb )

2

+ h′e
− 1

2

(
x−c−c′b
ww′b

)2
]

(5.4)

where h′ is the relative height, c′ is the relative centroid offset, and w′ is the relative

width of the second Gaussian with respect to the first. The b represents a broadening

factor, set to unity for this fitting, for adjustment of the width of the entire function

to match real data. This allows h′, c′, w, and w′ to be fixed by the simulation.

Additionally, if the simulation width is to be trusted as accurate, b can also be fixed

at unity. The parameter values are given in Table 5.1, and with a similar analysis for

the 315-346 MeV tagged photon energy bin in Table 5.2.

5.2 Pion Photoproduction

Before using the Compton line shape on the real data, it’s helpful to have some

knowledge about the broadening factor b. This is done by performing a similar anal-

ysis on simulated π0 photoproduction. Using the MAID database for cross section

weighting, a set of π0 events is produced with EventGen, run through the A2 simula-

tion, and then analyzed with AcquRoot. Constructing, and then fitting, the simulated

π0 missing mass, for the 273-303 MeV tagged photon energy bin, gives the results in

Figure 5.2. For a better comparison to Compton kinematics, it’s useful to constrain

this with the actual mass of the π0. While the cut on the calculated value for mγγ

ensures that this value is within the proper range, it can be further constrained by

following through the process

q +mp = k1 + k2 + p (5.5)

(q +mp)− (k1 + k2) = p (5.6)

(q +mp)
2 − (k1 + k2)2 = p2 (5.7)

(q +mp)
2 − 2(q +mp) · (k1 + k2) +m2

π0 = m2
miss (5.8)
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where q, k1, k2, and p, are the four momenta of the incident photon, the two π0

decay photons, and the recoil proton, respectively. As with the Compton shape,

(a) Gaussian (b) Double Gaussian

Figure 5.2: A2 simulation of pion photoproduction, showing accompanying Gaussian
and double Gaussian fits

the missing mass is best fit by the double Gaussian function of Equation 5.4. The

parameter values are also given in Table 5.1, and with a similar analysis for the

315-346 MeV tagged photon energy bin in Table 5.2.

h c w h′ c′ w′

Compton 71550 949.2 8.542 0.1706 14.95 1.538
Pion 3.13e7 949.4 7.736 0.3609 11.24 1.384

Table 5.1: Average parameters for Monte Carlo line shape (273-303 MeV)

h c w h′ c′ w′

Compton 87090 951.3 9.546 0.1513 16.64 1.540
Pion 2.26e7 951.9 8.754 0.3048 12.70 1.377

Table 5.2: Average parameters for Monte Carlo line shape (315-346 MeV)

While the parameters between the Compton and pion line shapes are noticeably

different, an interesting test is to see if one can be used to fit the other, adjusting

only h and b. This is shown in Figure 5.3. Fitting the Compton result using the pion

parameters requires a broadening parameter of b = 1.079, and fitting the pion result

126



(a) Compton fit with pion parameters (b) Pion fit with Compton parameters

Figure 5.3: A2 simulation of Compton scattering and pion photoproduction, fitting
each with the parameters from the opposite case. This is done by fixing the fit
parameters, except for the height, from the opposite case and allowing the broadening
parameter to float.

with the Compton parameters requires a broadening parameter of b = 0.9085. Very

close inspection reveals that these constrained fits are not as good as the individually

determined ones, but the broadening parameter does perform a decent job in matching

them.

5.2.1 Fitting to Data

Another check is to take the pion function and fit it to the π0 missing mass spectra

from actual data, again utilizing the mπ0 constraint given in Equation 5.8, fitting with

either a fixed (at unity) or floating broadening factor. The results of these fits are

shown in Figure 5.4. The clear need for a non-unity broadening factor indicates that

the simulation is somehow not fully describing the experimental energy resolutions.

For the best fit, the broadening factor arrived at is b = 1.392 (or for the 315-346

MeV bin it is b = 1.377). It’s important to note that a step has been skipped here,

as the data these curves are fit to are after the carbon subtraction. As mentioned

in section 4.4, an additional scaling factor had to be applied to the carbon data (in

addition to the scaling factor determined from ratios of live time corrected tagger

scalers). This scaling factor is also derived from the use of the Monte Carlo line
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(a) Height and centroid (b) Height, centroid, and broadening

Figure 5.4: Pion photoproduction data with fit from simulation, adjusting either
height and centroid or height, centroid, and line shape broadening factor b

shape, by fitting it to spectra (after a carbon subtraction scaled by various values)

and observing where the value of χ2 is minimized for the fit.

Assuming that perhaps the discrepancy between the Monte Carlo line shape and

the data in Figure 5.4 is due to a poor choice of carbon scaling, this process of iterating

over various carbon scaling factors can be performed with the line shape broadening

factor b = 1. Results of this are shown in Figure 5.5. While it’s possible to choose

a carbon scaling factor such that the resulting missing mass matches the simulated

line shape, it leads to an overshoot in the subtraction, resulting in negative counts.

For this reason the line shape was deemed to be lacking the proper energy resolution.

To account for this the process is repeated allowing the line shape broadening factor,

b, to vary as well, producing Figure 5.6. While the fit at a carbon scaling factor

of 1 is still deficient, the fit at a carbon scaling factor of 1.306 (where the value of

χ2 is minimized) is sufficient and doesn’t lead to an undershoot in the subtraction.

Repeating the process for the 315-346 MeV data has a similar result, with a carbon

scaling factor of 1.234. The simulated line shape broadening factors, as noted in the

beginning of this section, are also determined from the fits when χ2 is minimized. For

reference these broadening factors are provided in Table 5.3.
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(a) Various carbon scaling factors (b) Minimum carbon scaling factor

(c) Carbon scaling factor of 1.0 (d) Carbon scaling factor of 1.6

Figure 5.5: Pion photoproduction data with fit from simulation, adjusting only height
and centroid, for various carbon scaling factors

Energy Carbon Line Shape
273-303 1.306 1.392
315-346 1.234 1.377

Table 5.3: Carbon scaling and line shape broadening factors

5.2.2 Background Subtraction

As discussed in subsection 4.5.4, the full simulation of π0 photoproduction also

allows the ring analysis method to be checked. Firstly, those events that appear

to be Compton events, for any of the various reasons stated before, are analyzed

as such and produce missing mass spectra as given in Figure 5.7a. Running these

simulated events through the same ring analysis as for real data gives an indication of

the efficiency with which the ring analysis removes the background in the Compton
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(a) Various carbon scaling factors (b) Carbon scaling factor of 1.306

(c) Carbon scaling factor of 1.0 (d) Carbon scaling factor of 1.6

Figure 5.6: Pion photoproduction data with fit from simulation, adjusting height,
centroid and line shape broadening factor b, for various carbon scaling factors

(a) Compton (b) Ring

Figure 5.7: A2 simulation of pion photoproduction, analyzed as Compton or through
the ring analysis

spectra, as shown in Figure 5.7b. While the ring analysis does account for some of

this background, it’s also clearly missing some of it, especially at higher missing mass.
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Another possible method of background subtraction is to instead take the distri-

bution predicted by the simulation for π0 photoproduction that appears as Compton

scattering (as shown in Figure 5.7a), and apply it to the actual data instead of using

the ring analysis. The series of steps is shown in Figure 5.8.

• Figure 5.8a - The result from the simulation is roughly scaled to match its height

with the Compton background at around 1070 MeV. Here the assumption is

that this background is completely due to misidentified π0 events, but that

it suffers from the same broadening as that shown for observed π0 events in

Figure 5.4.

• Figure 5.8b - The simulation shapes are fit by a combination of the same double

Gaussian given by Equation 5.4 for the lower missing mass peak, and a simple

Gaussian for the higher missing mass peak.

• Figure 5.8c - Holding the centroid of the higher missing mass Gaussian fit fixed,

it’s refit to the primary background peak from the actual data. The ratio of

the final to initial height of this Gaussian is then multiplied to the height of the

initial lower missing mass double Gaussian fit. Likewise, the ratio of the final

to initial width of the higher missing mass Gaussian is used as the broadening

factor of the initial lower missing mass double Gaussian fit.

• Figure 5.8d - The two functions are then summed together to provide a back-

ground shape that can be used to subtract off the background.

While this method appears successful in this instance, there are various assumptions

that would be of concern if using it in general, namely that:

• The background is entirely from π0 background that’s taken into account with

the simulation.
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(a) Compton (black) with pion MC (red) (b) Fits to pion MC

(c) Fit scaled to Compton (d) Compton with fit subtracted

Figure 5.8: A2 simulation of pion photoproduction, fitted to background in Compton
scattering spectra

• The shapes of the simulated background are properly described by these Gaus-

sian and double Gaussian functions.

• The actual background will only differ from the simulation by its width, and

therefore holding the centroids of the fits to the simulation and broadening their

width and heights as described is an appropriate response.

Because of these concerns, the justification for this method of background subtraction

becomes tenuous, and is therefore not used at the present time.
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5.3 Proton Energy Corrections

5.3.1 Proton Energy Loss

The A2 simulation also provides a way to investigate the energy loss of the recoil

proton. Traveling from the event center to a detector requires passing through target

material, the 3He/4He bath, the cryostat shells, the transverse holding coil, air, and

then various detectors as well as their structural shells. This causes a massive particle,

such as a proton, to undergo interactions with various types of material, losing energy

along the way. With a detailed Geant4 simulation, such as exists for the A2 setup,

these interactions can be reproduced for protons of various energies.

To study these effects the method employed by J. Robinson[64] was repeated, by

the author, with the Frozen Spin Target. The simulation was run with a beam of

protons of various energies sent isotropically over all angles. This must be done at all

angles since the material traversed by the proton is not uniform over theta, or over

phi. The simulation follows the path of the proton, allowing it to interact with the

traversed material at accepted probabilities. For each proton the detected energy,

Ed
k (determined through analysis in AcquRoot), is compared to the actual energy,

Ea
k , demonstrating a sample energy loss for protons of that energy traveling in that

direction.

(a) Detected vs Actual (b) Detected for 100-110 MeV

Figure 5.9: A2 simulation of protons, looking at the detected energy as a function of
the actual energy
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As evidenced in Figure 5.9, the simulation projects that a 300 MeV proton will

on average lose about 20 MeV, while a 65 MeV proton will on average be completely

stopped. Plotting the difference between the actual and detected energies further

illustrates this effect, as shown in Figure 5.10.

(a) Difference vs Detected (b) Difference for 100-110 MeV

Figure 5.10: A2 simulation of protons, looking at the difference in energy as a function
of the detected energy

This difference is used to determine the actual energy from the detected energy

using Equation 5.9,

Ea
k = Ed

k + L(Ed
k , C) (5.9)

where L(Ed
k , C) is the average energy loss experienced for a proton detected in crys-

tal C with energy Ed
k . To determine the functional form of L, projections onto the

difference (y) axis for various slices of the detected kinetic energy, as shown in Fig-

ure 5.10b, are fitted with Gaussians. The mean values of each Gaussian fit are then

plotted as a function of the detected kinetic energy, and then fit with the form given

in Equation 5.10.

L(Ed
k , C) = l1(C) +

l2(C)

Ed
k − l3(C)

(5.10)

It is also useful, as will be discussed in subsection 5.3.2, to have the inverse relation

determining the detected energy from the actual energy. This is done in the same
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manner, by plotting the difference as a function of the actual energy, as shown in

Figure 5.11.

(a) Difference vs Actual (b) Difference for 100-110 MeV

Figure 5.11: A2 simulation of protons, looking at the difference in energy as a function
of the actual energy

The equation for going from actual to detected energy is given by Equation 5.11

Ed
k = Ea

k − L′(Ea
k , C) (5.11)

where L′(Ea
k , C) is the average energy loss experienced for a proton detected in crystal

C with actual energy Ea
k , whose functional form (given in Equation 5.12) is the same

as L.

L′(Ea
k , C) = l′1(C) +

l′2(C)

Ea
k − l′3(C)

(5.12)

l1 l2 l3 l′1 l′2 l′3
CB 4.58 3240 -46.9 7.93 1820 26.6

TAPS 5.39 3500 -52.9 10.3 1830 26.8

Table 5.4: Average parameters for proton energy loss calculation

Plotting L and L′, on Figure 5.10a and Figure 5.11a, gives Figure 5.12a and

Figure 5.12b, respectively. Applying this correction factor to the detected proton
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(a) Detected (b) Actual

Figure 5.12: A2 simulation of protons, looking at the fits to the difference in energy
as a function of the detected or actual energy

(a) Detected vs Actual (b) Detected for 100-110 MeV

Figure 5.13: A2 simulation of protons, looking at the corrected energy as a function
of the actual energy

energy in AcquRoot and producing the same plots as Figure 5.9a and Figure 5.11a,

with the corrected energy, results in Figure 5.13a and Figure 5.14a, respectively.

It should be noted that the plots shown previously are the combined results from

all crystals. By throwing 75 million protons with energies of 0-300 MeV each NaI

element has about 350 events/MeV. However, the analysis is performed in 5 MeV

wide bins so that each element has about 1750 events/5 MeV. Since TAPS subtends

a smaller solid angle, each element only has about 20 events/MeV, or 100 events/5

MeV. Given its symmetry about phi, however, elements can be grouped together into

similar theta ‘rings’, providing between 3600 events/5 MeV and 6000 events/5 MeV.
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(a) Difference vs Actual (b) Difference for 100-110 MeV

Figure 5.14: A2 simulation of protons, looking at the corrected difference in energy
as a function of the actual energy

To check the validity of this process on an individual basis, the results are looked at

for a relevant region in both the CB and TAPS. For the CB crystal 674 is chosen,

as this subtends approximately 30-40◦ in theta, and 85-95◦ in phi. For the 273-303

MeV tagged photon energy bin this theta range corresponds to 58-88 MeV in proton

energy. These results are shown in Figure 5.15 and Figure 5.16.

(a) Difference vs Actual (b) Difference for 58-88 MeV

Figure 5.15: A2 simulation of protons detected in the CB (crystal 674), looking at
the corrected difference in energy as a function of the actual energy

For TAPS, the 9th ring from the center (which as shown in Figure 2.22 corresponds

to crystals 45-53, 118-126, 191-199, 264-272, 337-345, and 410-418) subtends 15-

137



(a) Detected (b) Actual

Figure 5.16: A2 simulation of protons detected in the CB (crystal 674), looking at
the fits to the difference in energy as a function of the detected or actual energy

16.7◦ in theta, covering proton energies of 92-110 MeV. These results are shown in

Figure 5.17 and Figure 5.18.

(a) Difference vs Actual (b) Difference for 92-110 MeV

Figure 5.17: A2 simulation of protons detected in TAPS (ring nine), looking at the
corrected difference in energy as a function of the actual energy

For these individual choices (CB crystal 674, and TAPS ring 9), the parameters

are given in Table 5.5.

l1 l2 l3 l′1 l′2 l′3
CB 4.66 3510 -49.5 8.65 1900 30.2

TAPS 11.98 4900 -57.2 18.2 2330 49.1

Table 5.5: Selected crystal/ring parameters for proton energy loss calculation
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(a) Detected (b) Actual

Figure 5.18: A2 simulation of protons detected in TAPS (ring nine), looking at the
fits to the difference in energy as a function of the detected or actual energy

This simulation also permits a check of the proton deflection, and the validity of

the opening angle cut used in the primary analysis. Plotting the angle between the

‘detected’ and initial proton vectors gives Figure 5.19a. From this it’s clear that a

10◦ opening angle cut on the proton direction is reasonable.

(a) Opening angle vs Actual (b) Opening angle for 100-110 MeV

Figure 5.19: A2 simulation of protons, looking at the proton opening angle as a
function of the actual energy

5.3.2 Proton Response

In addition to the energy losses suffered by the proton in getting to a detector,

another effect causes a discrepancy in the measurement of its energy. The NaI and

BaF2 crystals are both calibrated for photon detection, and proton deposition results
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in a response different to that of photons. This can be observed by looking at actual

π0 photoproduction data, as described in the previous chapter. If the analysis is

adjusted to also require the detection of the recoil proton, the kinetic energy from

the missing mass four-vector can be compared to the measured energy of the recoil

proton. This proton will, of course, suffer the same energy loss as just described.

To properly compare them the actual energy of the missing particle is converted to

what should be the detected energy using Equation 5.11 (hence why it was important

to construct it). This ‘detected’ energy Ed
k , the energy of the proton when it hits a

detector crystal, can be related to the ‘measured’ energy Em
k that the analysis returns

via the crystal, photomultiplier tube, electronics, and software calibration.

Ed
k = Em

k + A(Em
k ) (5.13)

where A(Em
k ) is the attenuation effect in the crystals. Since this effect should be

identical for each crystal of the same type, it’s only necessary to calculate it globally

for the entire detector. However, since NaI and BaF2 have intrinsically different

characteristics, this function, as given in Equation 5.14, must be determined for each

one separately.

A(Em
k ) = a1 +

a2

Em
k − a3

(5.14)

This factor is determined in a similar way as the energy loss, by plotting the dif-

ference between the ‘detected’ and ‘measured’ energy as a function of the ‘measured’

energy, as shown in Figure 5.20a and Figure 5.21a for the CB and TAPS, respectively.

Projections onto the difference (y) axis, for each bin of the ‘measured’ energy (x) axis,

are fit with a Gaussian function, as shown in Figure 5.20b and Figure 5.21b for the

CB and TAPS, respectively. The centroids of these Gaussian fits are plotted as a

function of the ‘measured’ energy, as shown in Figure 5.22a and Figure 5.22b for the

CB and TAPS, respectively, and then fit with the functional form of Equation 5.14.

Results of these fits give the parameters listed in Table 5.6.
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(a) Difference vs Measured (b) Difference for 105-110 MeV

Figure 5.20: Protons detected in the CB from pion photoproduction, looking at the
difference in energy as a function of the measured energy

(a) Difference vs Measured (b) Difference for 105-110 MeV

Figure 5.21: Protons detected in TAPS from pion photoproduction, looking at the
difference in energy as a function of the measured energy

a1 a2 a3

CB -49.0 5400 -69.7
TAPS -25.5 3270 -37.1

Table 5.6: Parameters for proton energy attenuation calculation

Both corrections can be applied in sequence to convert a measured energy from

AcquRoot into an actual proton energy, using Equation 5.15.

Ea
k = Em

k + A(Em
k ) + L(Em

k + A(Em
k ), C) (5.15)
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(a) CB (b) TAPS

Figure 5.22: Protons detected from pion photoproduction, looking at fits to the dif-
ference in energy as a function of the measured energy

5.3.3 Missing Energy

The real test of this energy correction is to fully apply it to actual data. The miss-

ing energy, given in Equation 5.16, can be calculated for the same π0 photoproduction

reactions as analyzed in the previous section.

Emiss = Eγi +mp − Eπ0 − Ep (5.16)

Plotting the missing mass for this reaction as a function of the missing energy, calcu-

lated before applying the energy correction, produces the image in Figure 5.23. As

shown the missing energy, which should be zero, is centered around 20 MeV. With

the application of the energy correction, this is shifted into Figure 5.24. The peak is

now clearly centered around zero, with a much smaller width.

For π0 photoproduction in this energy range, such an analysis isn’t exceptionally

helpful however. While the missing energy peak is narrower, as expected there is

clearly very little background to this reaction. In principle this could be very helpful

for Compton scattering, where the missing energy would perhaps further distinguish

the events of interest from background (π0 photoproduction) events. For Compton
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(a) Missing mass vs energy (b) Missing mass of 900-980 MeV

Figure 5.23: Pion photoproduction missing energy before applying the proton en-
ergy corrections. Shown are missing mass plotted against missing energy (left) and
projection onto the missing energy axis for missing mass of 900-980 MeV (right).

(a) Missing mass vs energy (b) Missing mass of 900-980 MeV

Figure 5.24: Pion photoproduction missing energy after applying the proton energy
corrections. Shown are missing mass plotted against missing energy (left) and pro-
jection onto the missing energy axis for missing mass of 900-980 MeV (right).

scattering the missing energy, as given by Equation 5.17, can be similarly calculated

and plotted.

Emiss = Eγi +mp − Eγf − Ep (5.17)

The uncorrected proton case results in missing energies shown in Figure 5.25. The

situation is obviously similar, where the missing energy peak is shifted, now by about

50 MeV on average. The ‘comet’ like structure in the upper right is the same high

missing mass structure shown earlier. Applying the proton energy corrections results
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(a) Missing mass vs energy (b) Missing mass of 900-980 MeV

Figure 5.25: Compton scattering missing energy before applying the proton energy
corrections. Shown are missing mass plotted against missing energy (left) and pro-
jection onto the missing energy axis for missing mass of 900-980 MeV (right).

in Figure 5.26. The correction clearly tightens up these distributions, both for the

(a) Missing mass vs energy (b) Missing mass of 900-980 MeV

Figure 5.26: Compton scattering missing energy after applying the proton energy cor-
rections. Shown are missing mass plotted against missing energy (left) and projection
onto the missing energy axis for missing mass of 900-980 MeV (right).

Compton ‘island’ located at 938 MeV in missing mass and 0 MeV in missing energy

and the π0 photoproduction background ‘comet’. Unfortunately, since it doesn’t

improve the separation between these two structures, utilizing the missing energy in

the event selection was dropped.
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5.4 Proton Detection

The end result of the previous section is an energy correction for proton detection.

However, an obvious problem with this concept is that such a correction can only be

applied to a proton that is actually detected. It was noted that the likelihood of

a proton making it to a crystal rapidly diminished below 65 MeV. To study the

detection likelihood in quantitative detail, a similar combination of simulation and

analysis of π0 photoproduction data is used. Firstly, the simulation provides some

direct insight into this. The same isotropic proton data used for the energy loss study

is examined for a given initial proton energy, observing how often it results in energy

deposition in the detector system. Comparing the number of these ‘accepted’ events

to the number of initial ‘thrown’ events gives the plots in Figure 5.27. The black

(a) Before AcquRoot (b) After AcquRoot

Figure 5.27: A2 simulation of protons, looking at the number of accepted events

curves represent cases where any amount of energy deposition is required, whereas

the red curves represent a requirement of the typical 15 MeV cluster threshold. As

shown in the figure, this can be looked at either directly from the output of the Geant4

simulation, or after running it through AcquRoot. The resulting difference between

these two situations at higher proton energies is due to the chances of a high energy

proton resulting it more than one apparent cluster in the reconstruction. In general
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this would be of concern, but for this analysis the most energetic protons expected

are only 110 MeV.

The π0 photoproduction data is used to refine this, knowing that while the simu-

lation is rather advanced, it simply can not account for certain effects. The analysis

is performed in a similar manner as for the proton response (see subsection 5.3.2).

Cases where a recoil particle is detected are compared to cases where it’s not. This

becomes more complicated depending on the requirements for deciding the relevance

of the detected particle. While the analysis would primarily require that the recoil

particle is charged, it is also useful to check for recoil particles that perhaps are mis-

takenly determined to be neutral. In all cases exclusive particle number cuts are used,

requiring that two neutral particles are detected that appear to be the result of a π0

decay, and that at most only one other particle is detected. The number of events is

broken into three situations depending on the latter:

• NC - Events where a possible recoil particle is detected, and identified as charged

• NN - Events where a possible recoil particle is detected, and identified as neutral

• NM - Events where the recoil particle is missing

It’s also important to apply the typical opening angle cut to the possible recoil par-

ticle, to keep this analysis similar to the primary analysis. For both the charged and

neutral recoil cases edited versions of the above numbers are then:

• N ′C(θOA) - Events where a possible recoil particle is detected within the specified

opening angle, and identified as charged

• N ′N(θOA) - Events where a possible recoil particle is detected within the specified

opening angle, and identified as neutral

146



Note that N ′C(180◦) = NC and that N ′N(180◦) = NN . An efficiency that incorporates

detection, reconstruction, and identification, of a charged recoil particle can be defined

as

ε =
N ′C(θOA)

NC +NM

(5.18)

Given the proton energy determination issues detailed previously, and in order to

match with the missed recoil events, the proton energy and angle used in binning the

following plots are determined from the missing recoil particle.

(a) No OA Cut (b) 10◦ OA cut

Figure 5.28: Proton efficiencies using π0 photoproduction data, looking at events
that either include a charged particle or miss the recoil particle. The kinematically
determined recoil particle has a polar range of 35-40◦.

The structure below 50 MeV in the result without an opening angle cut clearly

points to the existence of many events that fall outside the typical opening angle cut.

Knowing that the chances of detecting a proton below 50 MeV are basically zero, it’s

obvious that the opening angle cut is important to remove background events. Of

note is the fact that the difference between the minimum and maximum efficiency

is essentially the same for both of these plots, lending credence to the efficiency

calculated with the opening angle cut.

To see how many events are possibly being lost due to misidentification of the

charged recoil particle as a neutral particle, the efficiency is constructed as
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ε =
N ′C(θOA)

NC +NN +NM

(5.19)

which incorporates these neutral events into the denominator of the efficiency. To see

if analysis of the neutral events within an opening angle cut would be beneficial, the

efficiency is calculated as

ε =
N ′C(θOA) +N ′N(θOA)

NC +NN +NM

(5.20)

(a) Charged (b) Charged and Neutral

Figure 5.29: Proton efficiencies using π0 photoproduction data, looking at events
that include a charged particle, a neutral particle, or miss the recoil particle. The
kinematically determined recoil particle has a polar range of 35-40◦.

Figure 5.29 shows that the efficiency when including neutral particles is decreased

as compared to Figure 5.28, even when analyzing neutral particles that satisfy the

opening angle cut as proper recoil particles. To further investigate how the neutral

events play a role, it’s useful to plot the number of charged or neutral events as a

function of their opening angle.

The odd double peak structure at 25-50◦ in Figure 5.30 is explained by the high

background rates in TAPS. This was determined by noting that these plots are for

recoils expected at 35-40◦, the centroid of which matches the position of the dip

between the two peaks. While the nature of the opening angle implies that these

events could be from anywhere on a 25-50◦ cone, the fact that this cone intersects the

center of TAPS was very telling. In addition, the position of these double peaks shifts
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(a) Charged (b) Neutral

Figure 5.30: Opening angle for charged and neutral recoils in π0 photoproduction.
The kinematically determined recoil particle has a polar range of 35-40◦, with the
black points depicting recoils of all energies, and the red points depicting recoils of
at least 50 MeV.

appropriately for other recoil angle ranges. To test this, the downstream fiducial cut

on TAPS is expanded from 6◦ to 12◦ in Figure 5.31b.

(a) Charged (b) Neutral

Figure 5.31: Opening angle for charged and neutral recoils in π0 photoproduction
with a larger TAPS fiducial cut. The kinematically determined recoil particle has a
polar range of 35-40◦, with the black points depicting recoils of all energies, and the
red points depicting recoils of at least 50 MeV.

The larger fiducial cut clearly eliminates a large portion of the background beyond

an opening angle of 10◦, and the efficiencies can be recalculated using this data.

While the result looking at only charged recoils without an opening cut is obvi-

ously affected by this change, the remaining efficiencies are not. As the other three
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(a) No OA Cut (b) 10◦ OA cut

Figure 5.32: Proton efficiencies using π0 photoproduction data with a larger TAPS
fiducial cut, looking at events that either include a charged particle or miss the recoil
particle. The kinematically determined recoil particle has a polar range of 35-40◦.

(a) Charged (b) Charged and Neutral

Figure 5.33: Proton efficiencies using π0 photoproduction data with a larger TAPS
fiducial cut, looking at events that include a charged particle, a neutral particle, or
miss the recoil particle. The kinematically determined recoil particle has a polar
range of 35-40◦.

require opening angle cuts in the numerator, the denominator is clearly dominated

by the number of events that miss the recoil particle entirely. Since Figure 5.30 and

Figure 5.31 depict the contribution of neutral events (especially inside the opening

angle cut) to be very small compared to charged recoils, Equation 5.18 is chosen

to best represent the proton efficiency. For various other angles this results in the

efficiencies in Figure 5.34.
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(a) 5-10◦ (b) 10-15◦

(c) 25-30◦ (d) 30-35◦

(e) 35-40◦ (f) 40-45◦

Figure 5.34: Proton efficiencies using π0 photoproduction data, looking at events that
either include a charged particle or miss the recoil particle

Other angular ranges are unfortunately unavailable due to the forward fiducial

cut of 0-6◦ (which slightly cuts into and therefore reduces the first range), the middle

fiducial cut of 18-25◦ (which obviously affects the acceptance of the 25-30◦ range,

hence the 39% maximum efficiency), and the kinematic ranges for π0 photoproduction

with a 450 MeV endpoint energy (which is seen in the reduction of the highest kinetic
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energy detectable in a given angular range, 200 MeV at 5-10◦ versus 120 MeV at

40-45◦). It’s already clear to see, however, that even once away from the edge of the

CB the proton efficiency is only about 60%, with a threshold of about 70 MeV. This

demonstrates one of the primary difficulties with this experiment. Besides having

large backgrounds from π0 photoproduction, there’s only a small kinematic range

that’s detectable. This range is also further reduced by the inclusion of the Cherenkov,

which places TAPS further downstream creating the gap between it and the CB as

depicted in Figure 4.1.

152



CHAPTER 6

ASYMMETRIES

Regardless of the method used to obtain the number of counts, the analysis sep-

arates events into bins in tagged photon energy, theta, and phi. For the transversely

polarized target data it also separates events into one of four categories depending on

target and beam polarization:

• Positive target polarization, right helicity beam = NR
+x(E, θ, φ)

• Positive target polarization, left helicity beam = NL
+x(E, θ, φ)

• Negative target polarization, right helicity beam = NR
−x(E, θ, φ)

• Negative target polarization, left helicity beam = NL
−x(E, θ, φ)

6.1 Compton Asymmetry

To produce Σ2x, as described in Equation 1.38, the cross sections for a given

energy, theta, and phi, need to be multiplied by various factors to be converted into

counts:

N(E, θ, φ) = σ(E, θ, φ) Ω(θ, φ) Φ(E)Lρ t ε(E, θ, φ) (6.1)

where σ (more appropriately written as dσ/dΩ) is the cross section, Ω is the solid

angle of the phase space being summed together, Φ is the photon flux, L is the

target length, ρ is the target density, and t is the running time. The ε represents the

efficiency, which is actually made up of three components: tagging, εt(E); detection,

εd(θ, φ); and acquisition, εa; efficiencies.
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Due to the relatively quick helicity flipping of the beam (approximately 1 Hz), the

various factors are identical for the right and left helicity states. Even if the flux, or

one of the efficiencies, drift over the course of the experiment, both helicity sets will

observe the same effect. Taking the positive target polarization data, the difference

between the right and left counts divided by their sum gives

NR
+x(E, θ, φ)−NL

+x(E, θ, φ)

NR
+x(E, θ, φ) +NL

+x(E, θ, φ)
=
σR+x(E, θ, φ)− σL+x(E, θ, φ)

σR+x(E, θ, φ) + σL+x(E, θ, φ)
(6.2)

While the right hand side looks like Equation 1.38, it’s important to note that the

theoretical asymmetry Σ2x assumes two things:

• The target and beam polarizations are both 100%.

• The scattered photon is detected at the same azimuthal angle as the direction

of polarization (otherwise the effective polarization at that angle is less than

the maximum, and therefore a similar concern as the first point).

6.1.1 Generalized Cross Sections and Counts

While the second assumption is false because of the choice to utilize the entire

detector (in order to get decent statistics), the first is simply impossible for this

experiment. The generalized cross sections for the actual experiment need to be

related to the ideal cross sections on the plane of polarization (for either polarization

direction) by

σR±(E, θ, φ) =

[
1 + P (E, φ)

2

]
σR±(E, θ) +

[
1− P (E, φ)

2

]
σL±(E, θ) (6.3)

σL±(E, θ, φ) =

[
1 + P (E, φ)

2

]
σL±(E, θ) +

[
1− P (E, φ)

2

]
σR±(E, θ) (6.4)

where P (E, φ) is the degree of polarization at a particular azimuthal angle. This is

given by

P (E, φ) = PTPγ(E)cos(φ0 − φ) (6.5)
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where PT is the degree of target polarization, Pγ(E) is the degree of beam polarization

(given by the form in Equation 2.2), and φ0 is the azimuthal direction of the target

polarization. Using these relations in Equation 6.2, and following through with the

algebra, results in

NR
+x(E, θ, φ)−NL

+x(E, θ, φ)

NR
+x(E, θ, φ) +NL

+x(E, θ, φ)
= P+xPγ(E)cos(φ+x − φ)

σR+x(E, θ)− σL+x(E, θ)
σR+x(E, θ) + σL+x(E, θ)

= Σ2x(E, θ)P+xPγ(E)cos(φ+x − φ) (6.6)

where P+x and φ+x have replaced PT and φ0, respectively, to differentiate between

positive and negative polarizations. Therefore the actual asymmetry is

Σ2x(E, θ) =
1

P+xPγ(E)cos(φ+x − φ)

NR
+x(E, θ, φ)−NL

+x(E, θ, φ)

NR
+x(E, θ, φ) +NL

+x(E, θ, φ)
(6.7)

This relation is adjusted for the negative target polarization by simply changing φ0

(replacing φ+x with φ−x).

Σ2x(E, θ) =
1

P−xPγ(E)cos(φ−x − φ)

NR
−x(E, θ, φ)−NL

−x(E, θ, φ)

NR
−x(E, θ, φ) +NL

−x(E, θ, φ)
(6.8)

With the target used for this experiment the polarization direction is flipped com-

pletely. This means that φ+x = φ−x + π, and since cos(φ+ π) = −cos(φ) it’s easy to

verify the parity argument noted in section 1.2, which says that

σR+x(E, θ, φ) = σL−x(E, θ, φ) (6.9)

σR−x(E, θ, φ) = σL+x(E, θ, φ) (6.10)

6.1.2 Phi Fitting

There are then two different ways of constructing this asymmetry for a given

energy and theta. The first is to take the difference between right and left helicity
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counts divided by their sum, for various values of φ at a given value of E and θ, and

then fit the resulting distribution with Σ2x(E, θ)PTPγ(E)cos(φ0− φ). An example of

this for the 100-120◦ point is shown in Figure 6.1. Knowing the values for PT , Pγ,

and φ0, the value for Σ2x is determined from the amplitude of this fit.

(a) Positive target (b) Negative target

Figure 6.1: Phi asymmetry distributions for Compton scattering at 100-120◦, with
both a positive and negative target polarization

6.1.3 Phi Summation

The second method, useful for lower statistics, is to integrate over phi, for a given

theta bin, over each hemisphere of the detector. The pole of one hemisphere (to

be called the ‘adjacent’ hemisphere, or φ = A) is intersected by the polarization

vector, and the pole of the other hemisphere (the ‘opposite’ hemisphere, or φ = O)

is clearly opposite this. With a polarization azimuth of φ0, the ‘adjacent’ hemisphere

implies an integration from φ0 − π
2

to φ0 + π
2
, and the ‘opposite’ hemisphere implies

an integration from φ0 − 3π
2

to φ0 − π
2
. The counts obtained in this way will reflect

an average cross section. For example, the average right helicity cross section for the

adjacent hemisphere is
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σ̄R(E, θ, A) =
1

π

∫ φ0+π
2

φ0−π2

{[
1 + P (E, φ)

2

]
σR(E, θ) +

[
1− P (E, φ)

2

]
σL(E, θ)

}
dφ

=
σR(E, θ) + σL(E, θ)

2π

∫ φ0+π
2

φ0−π2

dφ

+
σR(E, θ)− σL(E, θ)

2π

∫ φ0+π
2

φ0−π2

P (E, φ)dφ

=
σR(E, θ) + σL(E, θ)

2
+
PTPγ(E)

π

[
σR(E, θ)− σL(E, θ)

]
(6.11)

since

∫ φ0+π
2

φ0−π2

P (E, φ)dφ =

∫ φ0+π
2

φ0−π2

PTPγcos(φ0 − φ)dφ

= −PTPγsin(φ0 − φ)
∣∣∣φ0+π

2

φ0−π2
= 2PTPγ (6.12)

For the opposite hemisphere the only differences are the limits on the integral. So

with the polarization

∫ φ0−π2

φ0− 3π
2

P (E, φ)dφ = −PTPγsin(φ0 − φ)
∣∣∣φ0−π2
φ0− 3π

2

= −2PTPγ (6.13)

the average right helicity cross section is

σ̄R(E, θ,O) =
σR(E, θ) + σL(E, θ)

2
− PTPγ(E)

π

[
σR(E, θ)− σL(E, θ)

]
(6.14)

Looking at Equation 6.3 and Equation 6.4, it’s clear that to construct the average

cross sections, for left helicity, the right and left helicity components of Equation 6.11

and Equation 6.14 simply need to be flipped. So the adjacent hemisphere gives

σ̄L(E, θ,A) =
σL(E, θ) + σR(E, θ)

2
+
PTPγ(E)

π

[
σL(E, θ)− σR(E, θ)

]
(6.15)

and the opposite hemisphere gives

σ̄L(E, θ,O) =
σL(E, θ) + σR(E, θ)

2
− PTPγ(E)

π

[
σL(E, θ)− σR(E, θ)

]
(6.16)
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It’s trivial to see from Equation 6.11 to Equation 6.16 that σ̄R(E, θ, A) = σ̄L(E, θ,O)

and that σ̄R(E, θ,O) = σ̄L(E, θ,A). Applying this summing method for the adjacent

hemisphere to Equation 6.2, and following the algebra as done in Equation 6.6 gives

NR(E, θ, A)−NL(E, θ,A)

NR(E, θ, A) +NL(E, θ, A)
=
σ̄R(E, θ, A)− σ̄L(E, θ, A)

σ̄R(E, θ,A) + σ̄L(E, θ, A)

=
2PTPγ(E)

π

[
σR(E, θ)− σL(E, θ)

σR(E, θ) + σL(E, θ)

]
= Σ2x(E, θ)

2PTPγ(E)

π
(6.17)

Solving for the asymmetry results in

Σ2x(E, θ) =
π

2PTPγ(E)

[
NR(E, θ, A)−NL(E, θ,A)

NR(E, θ, A) +NL(E, θ,A)

]
(6.18)

or if following through with the opposite hemisphere

Σ2x(E, θ) =
π

2PTPγ(E)

[
NL(E, θ,O)−NR(E, θ,O)

NL(E, θ,O) +NR(E, θ,O)

]
(6.19)

The beauty of this method is the ability to then sum these two hemispheres to-

gether into one calculation, without having conflicting factors for converting between

cross sections and counts. To do this the denominator on the right hand side of each

equation is moved to the left hand side.

2PTPγ(E)
[
NR(E, θ, A) +NL(E, θ,A)

]
Σ2x(E, θ) = π

[
NR(E, θ,A)−NL(E, θ, A)

]
2PTPγ(E)

[
NL(E, θ,O) +NR(E, θ,O)

]
Σ2x(E, θ) = π

[
NL(E, θ,O)−NR(E, θ,O)

]

The left hand sides of each equation are then summed together, as are the right hand

sides.

158



2PTPγ(E)
[
NR(E, θ,A) +NL(E, θ, A) +NL(E, θ,O) +NR(E, θ,O)

]
Σ2x(E, θ)

= π
[
NR(E, θ, A)−NL(E, θ, A) +NL(E, θ,O)−NR(E, θ,O)

]
(6.20)

and solving for Σ2x gives

Σ2x(E, θ) =
π

2PTPγ(E)

[
NR(E, θ, A)−NL(E, θ,A) +NL(E, θ,O)−NR(E, θ,O)

NR(E, θ, A) +NL(E, θ,A) +NL(E, θ,O) +NR(E, θ,O)

]
(6.21)

6.1.4 Phi Fitting of Combined Polarizations

While either method (fitting over phi, or integrating over the hemispheres) can be

done for each polarization separately, and then taking the average of the two asym-

metries as the final answer, given the small statistics it’s beneficial to further combine

the two sets into one. To combine them for the phi fitting method Equation 6.7 and

Equation 6.8 are rewritten as

P+xPγ(E)cos(φ+x − φ)
[
NR

+x(E, θ, φ) +NL
+x(E, θ, φ)

]
Σ2x(E, θ)

= NR
+x(E, θ, φ)−NL

+x(E, θ, φ) (6.22)

P−xPγ(E)cos(φ−x − φ)
[
NR
−x(E, θ, φ) +NL

−x(E, θ, φ)
]

Σ2x(E, θ)

= NR
−x(E, θ, φ)−NL

−x(E, θ, φ) (6.23)

Subtracting the left side of the positive polarization by the negative (and similarly

for the right side) gives

Σ2x(E, θ)
{
P+xPγ(E)cos(φ+x − φ)

[
NR

+x(E, θ, φ) +NL
+x(E, θ, φ)

]
− P−xPγ(E)cos(φ−x − φ)

[
NR
−x(E, θ, φ) +NL

−x(E, θ, φ)
] }

= NR
+x(E, θ, φ)−NL

+x(E, θ, φ)−NR
−x(E, θ, φ) +NL

−x(E, θ, φ) (6.24)
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Solving for the asymmetry (note the dropping of the (E, θ, φ) dependence from the

counts, solely for the sake of brevity) gives

Σ2x(E, θ) =
NR

+x −NL
+x −NR

−x +NL
−x

Pγ(E)cos(φ+x − φ) [P+x (NR
+x +NL

+x) + P−x (NR
−x +NL

−x)]
(6.25)

where only the cos function for the positive polarization is shown. As noted before,

cos(φ−x − φ) = −cos(φ+x − φ), so the two cos functions can be expressed as one,

arbitrarily chosen as the positive polarization. The reason for subtracting both sides,

as opposed to summing as done in Equation 6.20, is to leave the denominator as a

sum total after replacing the cos functions. When applied to the data, again for the

100-120◦ point, the result is Figure 6.2.

Figure 6.2: Phi asymmetry distributions for Compton scattering at 100-120◦, sum-
ming together both positive and negative target polarization data sets

If the various factors in Equation 6.1, as well as the actual polarization magnitudes,

were identical then the counts, like the cross sections, would satisfy

NR
+x(E, θ, φ) = NL

−x(E, θ, φ) (6.26)

NL
+x(E, θ, φ) = NR

−x(E, θ, φ) (6.27)
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simplifying Equation 6.25.

6.1.5 Phi Summation of Combined Polarizations

To sum together both polarizations in the hemisphere summing method, it again

helps to pick one of the polarizations to represent the general direction, in this case

to distinguish between the adjacent and opposite hemispheres (A and O as in Equa-

tion 6.21) which switch meaning when the polarization is flipped. For this experi-

ment, the direction of positive polarization is approximately +ŷ. So it’s reasonable

to rename the ‘adjacent’ hemisphere for positive polarization as the ‘top’ hemisphere

(φ = T ), and the ‘opposite’ hemisphere as the ‘bottom’ hemisphere (φ = B), since

they literally are. This relationship is flipped for the negative case.

N+x(E, θ, A) = N+x(E, θ, T )

N+x(E, θ,O) = N+x(E, θ,B)

N−x(E, θ, A) = N−x(E, θ,B)

N−x(E, θ,O) = N−x(E, θ, T )

Taking Equation 6.28 for both positive and negative target polarizations, using the

above substitutions, and utilizing the same steps used to arrive at it in the first place,

the polarizations are added together resulting in

Σ2x(E, θ) =
π

2Pγ(E)

[
NR

+x(E, θ, T )−NL
+x(E, θ, T ) +NL

+x(E, θ,B)−NR
+x(E, θ,B)

+NR
−x(E, θ,B)−NL

−x(E, θ,B) +NL
−x(E, θ, T )−NR

−x(E, θ, T )
]

/{
P+x

[
NR

+x(E, θ, T ) +NL
+x(E, θ, T ) +NL

+x(E, θ,B) +NR
+x(E, θ,B)

]
+ P−x

[
NR
−x(E, θ,B) +NL

−x(E, θ,B) +NL
−x(E, θ, T ) +NR

−x(E, θ, T )
] }

(6.28)
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The missing mass distributions for the actual data (starting with Figure 4.14),

already utilized this type of summation. What were called ‘positive’ and ‘negative’

sets are represented by NP and NN , respectively:

NP (E, θ) = NR
+x(E, θ, T ) +NL

+x(E, θ,B) +NR
−x(E, θ,B) +NL

−x(E, θ, T ) (6.29)

NN(E, θ) = NR
+x(E, θ,B) +NL

+x(E, θ, T ) +NR
−x(E, θ, T ) +NL

−x(E, θ,B) (6.30)

6.2 Pion Photoproduction Asymmetry

A useful test of the asymmetry construction is to also perform it for the π0 photo-

production results. Given its much larger cross section, it’s easier to check the validity

of the method. The asymmetry is defined a bit differently for π0 photoproduction

however, and is in terms of the observables F (E, θ) and T (E, θ):

NR
+x(E, θ, φ)−NL

+x(E, θ, φ)

NR
+x(E, θ, φ) +NL

+x(E, θ, φ)
=
F (E, θ)PTPγ(E)cos(φ+x − φ)

1 + T (E, θ)PT sin(φ+x − φ)
(6.31)

Examples of this are shown in Figure 6.3. The more complicated nature of the phi

(a) Positive target (b) Negative target

Figure 6.3: Phi asymmetry distributions for π0 photoproduction at 100-120◦, with
both a positive and negative target polarization

dependence is due to the fact that π0 photoproduction has an intrinsic target asym-
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metry T (E, θ) that is evident with a transversely polarized target and an unpolarized

beam.

N+x(E, θ, φ)−N−x(E, θ, φ)

N+x(E, θ, φ) +N−x(E, θ, φ)
= T (E, θ)PT sin(φ+x − φ) (6.32)

For Compton scattering such an asymmetry is non-existent, so its version of T (E, θ)

would be zero. This reduces Equation 6.31 to Equation 6.7, with its version of F (E, θ)

being identical to Σ2x(E, θ). An example for the π0 photoproduction data, again at

100-120◦, is shown in Figure 6.4, fitted with sin(φ0 − φ).

Figure 6.4: Phi asymmetry distributions for π0 photoproduction at 100-120◦, sum-
ming together both beam helicity states for each target polarization data sets
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CHAPTER 7

RESULTS AND DISCUSSION

The results of the analysis outlined in this document are presented for two different

energy ranges: one that is just below, and one that is just above, γp → π0π0p

threshold (308.85 MeV). Specifically these ranges are 272.73-303.32 MeV and 315.25-

345.94 MeV, respectively. Both energy ranges use data from the same experimental

runs, which were broken into two main sets (one in September 2010 and one in

February 2011), as well as subsets for positive and negative target polarization runs.

These sets are listed with their run times and average target polarizations in Table 7.1,

along with the total run time and an overall average of the absolute values of the target

polarizations.

Set Runs Time (h) Target Pol (%)
Neg. 1 26820-26853 12.2 -67.9 ± 3.6
Neg. 2 26859-27109 90.2 -75.2 ± 4.0
Pos. 1 27110-27367 84.6 +77.1 ± 4.1
Pos. 2 35532-35777 86.4 +89.0 ± 5.0
Pos. 3 35778-35885 41.5 +89.2 ± 5.1
Neg. 3 35887-36027 47.7 -77.0 ± 4.4
Neg. 4 36028-36303 96.0 -84.9 ± 4.8

Total/Aver. 459.6 81.6 ± 1.7

Table 7.1: Time and target polarization information for data sets

7.1 Below γp→ π0π0p Threshold

While the parameters in Table 7.1 are energy independent, other important val-

ues in constructing the asymmetries are energy dependent. Two such variables are
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the photon beam polarization and the carbon scaling factor used in subtracting out

the carbon contribution to the missing mass spectra. The carbon scaling factor, as

discussed in section 4.3, scales the separate experimental run on a carbon target to

each of these runs on the polarized butanol target. Since the scaling factor is based

on ratios of live time corrected tagger scaler hits, this factor is different for each

polarization period, as well as for different regions of the tagger. In addition, as

discussed in subsection 5.2.1, this base carbon scaling factor is insufficient to remove

the background in π0 photoproduction spectra. That result indicated an additional

factor of 1.306 is needed in this energy bin to ideally match the background. For

this energy bin these parameters are given in Table 7.2, along with total carbon to

butanol scaling factors and an average photon beam polarization.

Set Initial Scaling Corrected Scaling Photon Pol (%)
Neg. 1 0.156 0.203 67.9 ± 0.1
Neg. 2 1.239 1.618 67.9 ± 0.1
Pos. 1 1.020 1.333 68.7 ± 0.4
Pos. 2 1.244 1.624 66.5 ± 0.3
Pos. 3 0.610 0.797 66.5 ± 0.3
Neg. 3 0.762 0.996 64.8 ± 0.2
Neg. 4 1.392 1.818 64.5 ± 0.1

Total/Aver. 6.423 8.389 66.0 ± 0.1

Table 7.2: Carbon scaling factors before and after additional scaling factor, and
photon polarization values for the lower energy bin

Calculating the asymmetry, using these parameters, through either the phi fitting

method of Equation 6.25, or through the phi summing method of Equation 6.28,

results in the asymmetries noted in Table 7.3.

Using the same method, discussed in section 1.2 and subsection A.6.3, that pro-

duced Figure 1.11 and Figure A.15, the asymmetry results are plotted with disper-

sion theory curves for a variety of values for γM1M1 while holding γE1E1 fixed at the

HDPV[42] value of -4.3, as shown in Figure 7.1 and Figure 7.2. In both of these plots,
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Angle Fitted Summed
90 -0.254 ± 0.110 -0.285 ± 0.131
110 -0.369 ± 0.080 -0.384 ± 0.091
130 -0.292 ± 0.153 -0.358 ± 0.166
150 -0.182 ± 0.148 -0.090 ± 0.155

Table 7.3: Asymmetry results using either the phi fitting method, or the phi summing
method for the lower energy bin

as discussed previously, the various color bands represent different values for γM1M1,

while the spread of each band is a result of allowing α, β, γ0, and γπ, to vary about

their experimental errors. As depicted previously, Σ2x exhibits a very weak sensitivity

to γM1M1, allowing widely varying choices of this spin polarizability to adequately fit

the data points, as shown in Figure 7.1 and Figure 7.2, which is itself encouraging as

the data clearly follows the trend of these curves.
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Figure 7.1: Σ2x from phi fitting method, for 273-303 MeV, where γM1M1 is varied
while γE1E1 is fixed at -4.3.
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Figure 7.2: Σ2x from phi summing method, for 273-303 MeV, where γM1M1 is varied
while γE1E1 is fixed at -4.3.

 (deg)labθCompton 
0 20 40 60 80 100 120 140 160 180

2xΣ

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
 = -2.3

E1E1
γ

 = -3.3
E1E1

γ
 = -4.3

E1E1
γ

 = -5.3
E1E1

γ
 = -6.3

E1E1
γ

Figure 7.3: Σ2x from phi fitting method, for 273-303 MeV, where γE1E1 is varied while
γM1M1 is fixed at 2.9.
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Figure 7.4: Σ2x from phi summing method, for 273-303 MeV, where γE1E1 is varied
while γM1M1 is fixed at 2.9.

The same data are also plotted with curves generated by varying γE1E1 while hold-

ing γM1M1 fixed at the HDPV[42] value of 2.9. These results are shown in Figure 7.3

and Figure 7.4 where, as also depicted previously, Σ2x exhibits a very strong sensi-

tivity to γE1E1. Now there is clearly a range of values for this spin polarizability that

agrees with the data better than others. Even without a complicated χ2 minimizing

fit (which is underway), a rough ‘eyeball fit’ of γE1E1 = 4.3 ± 1.5 depicts the data

well.

7.2 Above γp→ π0π0p Threshold

Although the dispersion code, used in this analysis to produce theoretical asym-

metries, is not valid above γp → π0π0p threshold, it’s obviously still of interest to

calculate these double polarized Compton asymmetries in this range for the first time.

As with the previous case, the energy range has its own set of photon beam polariza-
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tion as well as carbon scaling factors (including the additional carbon scaling factor

of 1.234 noted in subsection 5.2.1). These are given in Table 7.4, along with total

carbon to butanol scaling factors and an average photon beam polarization. With

Set Initial Scaling Corrected Scaling Photon Pol (%)
Neg. 1 0.155 0.192 75.2 ± 0.1
Neg. 2 1.236 1.525 75.2 ± 0.1
Pos. 1 1.014 1.251 76.2 ± 0.4
Pos. 2 1.206 1.488 73.8 ± 0.3
Pos. 3 0.569 0.702 73.8 ± 0.3
Neg. 3 0.702 0.867 72.0 ± 0.2
Neg. 4 1.262 1.558 71.6 ± 0.1

Total/Aver. 6.144 7.582 73.2 ± 0.1

Table 7.4: Carbon scaling factors before and after additional scaling factor, and
photon polarization for the higher energy bin

these parameters, and following the same methodology as the lower energy range,

constructing the asymmetries with either the phi fitting method or the phi summing

method produces Figure 7.5 or Figure 7.6, respectively. Since the dispersion code

is not valid at this energy range, there are no theoretical curves plotted with these

points. Of note however is the change in the scale of the asymmetry axis (from -0.7

to 0.7 before to -0.4 to 0.4 now). The numbers for the asymmetries are noted in

Table 7.5.

Angle Fitted Summed
70 -0.106 ± 0.070 -0.160 ± 0.081
90 -0.153 ± 0.034 -0.168 ± 0.038
110 -0.222 ± 0.048 -0.202 ± 0.052
130 -0.229 ± 0.101 -0.308 ± 0.114
150 -0.056 ± 0.099 -0.074 ± 0.108

Table 7.5: Asymmetry results using either the phi fitting method, or the phi summing
method for the higher energy bin
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Figure 7.5: Σ2x from phi fitting method, for 315-346 MeV
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Figure 7.6: Σ2x from phi summing method, for 315-346 MeV
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7.3 Conclusion and Looking Forward

These asymmetries are certainly a significant achievement in their own right, be-

ing the first double polarized Compton scattering asymmetries ever measured. The

uncertainty in these measurements are larger than initially anticipated due to several

issues alluded to previously:

• Proton detection - With the need for distinguishing between a valid Compton

event from a proton and coherent and incoherent processes on carbon and oxy-

gen, the detection of a proton is vital to the analysis. Energy losses in the frozen

spin target were considerably larger than expected (with a threshold of about

70 MeV, initially thought to have a threshold of about 40 MeV), and both the

PID and MWPC suffered from efficiency losses during the beam-times.

• Pion background - Assuming the carbon subtraction is performed correctly,

the remaining background in the analysis is neutral pion photoproduction off

of the proton. Characterizing this background properly has been both more

important and more difficult than expected. For this reason, as mentioned in

subsection 4.5.4, the present asymmetries only utilize a simple integration of the

missing mass peak up to 940 MeV (roughly the proton mass). The next steps in

this analysis are to continue the investigation with simulation, and attempt to

extract a larger portion of events by modeling the background more efficiently.

Even with the conservative upper integration limit on the missing mass spectra,

a rough value for γE1E1 = 4.3± 1.5 can be ‘eyeballed’ from Figure 7.3 or Figure 7.4.

Considering the spread in theoretical values for γE1E1, ranging from -1.4 to -5.7 as

shown in Table 1.1, these asymmetries can already lend weight to the discussion

of spin-polarizabilities. A more accurate value will also be extracted with a χ2 fit

utilizing the constraints provided by α, β, γ0, and γπ. This will be further improved

by performing a global fit with other sets of Compton scattering data. Notably, the
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A2 Collaboration at MAMI already have plans to perform a full run with a linearly

polarized photon beam on an unpolarized proton target to measure Σ3 later this year.

After this, the installation of the Frozen Spin Target with a solenoidal holding coil,

providing longitudinal target polarization, will allow for a measurement of Σ2z.

These future runs will benefit from the experience of this experimental run, by

noting a few of the lessons learned here:

• Ensure that all charged particle detection; through the PID, MWPC, and TAPS

Veto; is as optimized as possible.

• A proper, pre-run calibration of the detectors would be very useful for charac-

terizing all of the detectors before attempting the in-run calibration using π0

photoproduction, as discussed in section 3.2.

• While the Cherenkov detector can be very useful in certain circumstances, the

loss in efficiency for a crucial angular range of the recoil proton from Compton

scattering was detrimental to this analysis. As such its removal is suggested for

the future Compton runs.

• The inclusion of the PbWO4, while not useful for Compton kinematics, could

help in reducing some of the background. These have already been fixed, and

are said to be fully working now.

• With the upgrade of the DAQ to FPGAs, there is now the possibility for im-

plementing more advanced triggers, such as a coplanar trigger. Studies of this

are underway and should help determine the feasibility and usefulness of such

a trigger.

Once all three Compton scattering experiments have been completed a complete

extraction of all four proton spin polarizabilities will be possible, providing a very

important test of proton structure theories.
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APPENDIX

SENSITIVITY STUDY

In preparing the proposal to the MAMI Peer Advisory Committee (PAC) for the

set of three Compton scattering experiments, the following study investigated the

sensitivities of the proton spin polarizabilities on the asymmetries, Σ2z, Σ2x, and Σ3.

A fixed-t dispersion analysis code was used to generate tables of cross sections for

various values of the polarizabilities. These cross sections were turned into anticipated

counts from which pseudo-data was created, and then fit to the polarizabilities using

partial derivatives constructed from the code-produced tables. This was all done

for the three experimental runs at two different energies of 240 MeV and 280 MeV.

Four different constraints (γ0, γπ, α + β, and α − β) were potentially included in a

chi-squared minimization routine, whose returned fitting errors are quoted here as

the polarizability errors. The smallest errors returned were for the fully constrained

280 MeV data: 0.27, 0.60, 0.34, and 0.51×10−4 fm4 for γE1E1, γE1M2, γM1E2, and

γM1M1 respectively. The largest errors returned were for the partially constrained

240 MeV data: 0.95, 2.12, 1.27, and 0.81×10−4 fm4 for γE1E1, γE1M2, γM1E2, and

γM1M1 respectively.

A.1 Dispersion Code

This study used a fixed-t dispersion analysis code, courtesy of Barbara Pasquini[4],

which used the ‘nominal’ (although adjustable) settings given in Table A.1. For Σ2z

and Σ2x the program outputs polar lab scattering angle, unpolarized cross section

(σunpol), polarized cross section with right helicity photons (σR), and polarized cross
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γE1E1 γE1M2 γM1E2 γM1M1 α + β α− β
Value -4.3 -0.01 2.1 2.9 13.82 10.5

Units 10−4 fm4 10−4 fm4 10−4 fm4 10−4 fm4 10−4 fm3 10−4 fm3

Table A.1: Nominal values for the scaler and vector polarizabilities used in the dis-
persion code

section with left helicity photons (σL). For Σ3 it only outputs the polar lab scattering

angle and the asymmetry, which was converted to cross sections (both parallel and

perpendicular to the plane of beam polarization) using the same unpolarized cross

sections given in Σ2z and Σ2x:

σ‖ = σunpol(1 + Σ3) (A.1)

σ⊥ = σunpol(1− Σ3) (A.2)

The range of polar angles was selected from 0 to 180◦ in 1◦ steps for good flexibility.

To determine how the cross section is sensitive to the polarizabilities, the code

was rerun after perturbing each polarizability, individually, about the nominal values

by ±1.0 in the typical units. This whole process was also repeated for varied incident

photon energies of ±10.0 MeV to average over the energy bin of the Bremsstrahlung

beam.

A.2 Cross Sections and Partials

From these data sets, the energy bin averaged cross section was expressed by the

following linear expansion:

174



< σ(kmax, kmin, {γi}) > = σ(ko, {γ̄i}) +
6∑
i=1

∂σ

∂γi
(ko, {γ̄i})∆γi

+

[
∂σ

∂k
(ko, {γ̄i}) +

6∑
i=1

∂2σ

∂γi∂k
(ko, {γ̄i})∆γi

]
× F (kmax, kmin)

(A.3)

where ko is the energy bin centroid, γ̄i is the nominal value for the polarizability,

∆γi = γi − γ̄i or the change in the polarizability from its nominal value (note that γi

stands for any of the four spin polarizabilities, alpha, or beta, hence the summation

from 1 to 6), and F is the flux factor given by:

F (kmax, kmin) =

[
(kmax − kmin)− koln

(
kmax
kmin

)]
ln
(
kmax
kmin

) (A.4)

The partials in Equation A.3 were approximated directly from the cross section

data produced by the dispersion code, where each polarizability was individually

perturbed. Taking γE1E1 for example, and perturbing it up by 1.0 in the standard

units:

∂σ

∂γE1E1

≈ σ′ − σ̄
γ′E1E1 − γ̄E1E1

=
σ′ − σ̄
−3.3 + 4.3

(A.5)

With a little rearranging, Equation A.3 can be rewritten in the following form:

< σ(kmax, kmin, {γi}) >=< σ(kmax, kmin, {γ̄i}) > +
6∑
i=1

Ci(ko, {γ̄i})∆γi. (A.6)

The first term is the energy bin averaged cross section with the nominal polarizability

values, defined as:

< σ(kmax, kmin, {γ̄i}) >= σ(ko, {γ̄i}) +

[
∂σ

∂k
(ko, {γ̄i})× F (kmax, kmin)

]
(A.7)
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The second term is the adjustment to the cross section for an alternate polarizability

value, with the partial derivative expansion for each given by:

Ci(ko, {γ̄i}) =
∂σ

∂γi
(ko, {γ̄i}) +

[
∂2σ

∂γi∂k
(ko, {γ̄i})× F (kmax, kmin)

]
(A.8)

This separates the linear expansion into two parts. The first, Equation A.7, was

calculated for a given energy bin and used to determine the ‘nominal’ data about

which the pseudo-data was thrown. The second, Equation A.8, was calculated based

on the perturbations put into the dispersion code, and used in the fitting process.

A.3 Simulating Data

This simulation was run prior to the actual data that now can be used to fit

the polarizabilities. To test out these sensitivities, pseudo-data was produced by

spreading out the expected number of counts by their statistical uncertainties. To

calculate the expected counts, and the error, the details of the experimental setup

were incorporated.

A.3.1 Solid Angle

As discussed in the actual analysis, this experiment was expected to be limited to

events where the recoil proton had enough energy to reach the detector, allowing for

tagging of the event. This minimum recoil energy was initially taken to be 40 MeV,

which specified a forward angle cutoff of

θmin = cos−1

[
1− EpMp(

E2
γ − EpEγ

)] (A.9)

where Ep and Mp are the kinetic energy and mass, respectively, of the proton, and Eγ

is the energy of the incident photon. From this angle backward to 160◦ the detector

was divided into polar angle bins of 10◦ to have reasonable statistics in each bin. The
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solid angle for a given bin was then determined by integrating over the azimuthal

angle:

Ω =

∫ 2π

0

∫ θ2

θ1

sinθ dθ dφ = 2π(cosθ1 − cosθ2) (A.10)

The range for integration depends upon the experiment however. As described

in subsection 6.1.3 and subsection 6.1.5, for the Σ2x experiment, at a given helicity,

one hemisphere of the detector sees a ‘positive’ target polarization while the other

sees a ‘negative’ target polarization. However, the ‘negative’ target polarization can

alternatively be thought of as a ‘positive’ target polarization with the opposite beam

helicity. With an actual helicity flip, this situation is reversed. This leads to the solid

angle being calculated over two bins, one for each hemisphere.

The situation for Σ2z is much simpler, since the target is polarized along the beam

axis (either parallel or anti-parallel to it). Because of this azimuthal symmetry, the

solid angle can be calculated as one bin for the entire detector.

For the Σ3 experiment, however, the beam is linearly polarized. At a given time

two opposing quarters of the detector are considered to see the ‘parallel’ case and the

other two opposing quarters see the ‘perpendicular’ case. To reduce systematics, the

plane of polarization is typically rotated by 90◦, thereby flipping the ‘quarters’. For

this situation then, the solid angle is calculated over four bins, although opposite bins

are paired together in the end.

Regardless of how it’s divided, the entire detector is effectively used with the time

divided equally between right and left helicity (or parallel and perpendicular) states.

A.3.2 Polarization

All of the data produced by the dispersion code assumes 100% beam and target

(if applicable) polarizations. This was corrected for to produce proper pseudo-data,

which had a ‘washing out’ effect on the asymmetry. As noted in subsection 6.1.1,
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real polarization was accounted for by adjusting the cross sections as given in Equa-

tion 6.3 and Equation 6.4. The magnitude of polarization P (E, φ) was given for Σ2x

in Equation 6.5. In the case of Σ2z, this polarization is simply the product of the

beam (Pγ) and target (PT ) polarizations. For Σ3 it is

P (E, φ) = Pγ(E) |cos(φ0 − φ)| (A.11)

For this sensitivity study the variation was accounted for by treating the cross section

as a constant over the portion of the detector being considered, and assigning an

average effective polarization to that portion. The azimuthal ranges for determining

the effective polarization are a hemisphere for Σ2x and a quarter sphere for Σ3, as

discussed in the previous section.

Σ2x → P̄ (E) =
1

π

∫ φ0+π
2

φ0−π2

PTPγ(E)cos(φ0 − φ)dφ =
2

π
PTPγ(E) (A.12)

Σ2z → P̄ (E) = PTPγ(E) (A.13)

Σ3 → P̄ (E) =
2

π

∫ φ0+π
4

φ0−π4

Pγ(E) |cos(φ0 − φ)| dφ =
2
√

2

π
Pγ(E) (A.14)

This resulted in the values for the effective polarizations shown in Table A.2, using

the expected beam and target polarization values

Run PT (%) Pγ (%) P (%)
Σ2x 70 70 31.2
Σ2z 70 70 49.0
Σ3 - 65 58.5

Table A.2: Effective polarizations expected for the different Compton scattering ex-
periments
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A.3.3 Asymmetries

With the effective polarization correction to the cross sections, the counts in each

polar angle bin were determined using Equation 6.1, with the factors given in Ta-

ble A.3.

Φ (106γ/s) ρ (1022nucleons/cm3) L (cm) t (hours)
Σ2x 1.0 4.5 2.0 300
Σ2z 1.0 4.5 2.0 300
Σ3 1.0 4.0 5.0 100

Table A.3: Factors used to convert theoretical cross sections to expected counts

The asymmetries were then constructed in the following way:

Σ2x =
σR+x − σL+x
σR+x + σL+x

=
NR

+x −NL
+x

NR
+x +NL

+x

(A.15)

Σ2z =
σR+z − σL+z
σR+z + σL+z

=
NR

+z −NL
+z

NR
+z +NL

+z

(A.16)

Σ3 =
σ‖ − σ⊥
σ‖ + σ⊥

=
N‖ −N⊥
N‖ +N⊥

(A.17)

Unlike in the real analysis, the effective polarization was not factored back out of

these equations which left the asymmetries diluted. With the purpose of this study

being to examine the sensitivity of the asymmetries to the polarizabilities, this does

not matter. It was important to calculate the counts this way in order to properly

determine the errors, propagate them, and throw the pseudo-data.

A.3.4 Errors

The error on the number of counts was determined simply as the statistical devi-

ation:

∆N =
√
N (A.18)
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which then propagates into a generalized asymmetry measurement of

Σ =
σ1 − σ2

σ1 + σ2

=
N1 −N2

N1 +N2

(A.19)

through

∆Σ = 2

√
(N2∆N1)2 + (N1∆N2)2

(N1 +N2)4 (A.20)

A.4 Fitting

Using all of the previous equations, and the cross sections obtained through the

dispersion code, the polarizabilities were fit to pseudo-data. The first step in this

process was to produce the pseudo-data itself.

A.4.1 Throwing Pseudo-data

The procedure for producing a set of pseudo-data was as follows:

1. Turn dispersion code cross sections into real polarization cross sections (Equa-

tion 6.3 and Equation 6.4).

2. Account for energy bin width to determine ‘nominal’ cross sections (Equa-

tion A.7).

3. Turn cross sections into ‘nominal’ counts, Nnom (Equation 6.1).

4. Take square root of counts to obtain statistical errors (Equation A.18).

5. Throw counts over a Gaussian distribution with centroids of the ‘nominal’

counts and standard deviations equal to the statistical errors.

6. Call the new counts the ‘experimental’ counts, Nex.

7. Take square root of Nex to obtain ‘experimental’ error, Ner.
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8. Construct ‘experimental’ asymmetries, Σex, and asymmetry errors, Σer (Equa-

tion A.15 to Equation A.17 and Equation A.20).

The various partials, with respect to the different polarizabilities, described in sec-

tion A.2 were also constructed. To optimize the processing time of the code, it was

useful to actually describe the partials of counts, rather than the partials of cross

sections. This avoided converting back to counts within the fitting function after

every adjustment to the polarizabilities. The process for this alteration was identical

to that described above, and gave variations on Equation A.6, Equation A.7, and

Equation A.8 of:

< N(kmax, kmin, {γi}) > =< N(kmax, kmin, {γ̄i}) > +
6∑
i=1

Ci(ko, {γ̄i})∆γi (A.21)

< N(kmax, kmin, {γ̄i}) > = N(ko, {γ̄i}) +

[
∂N

∂k
(ko, {γ̄i})× F (kmax, kmin)

]
(A.22)

Ci(ko, {γ̄i}) =
∂N

∂γi
(ko, {γ̄i}) +

[
∂2N

∂γi∂k
(ko, {γ̄i})× F (kmax, kmin)

]
(A.23)

Once all of this was complete a minimization class in ROOT, called Minuit, was

run. Minuit takes, as input, the function to minimize and the parameters to adjust

in order to minimize the function. The parameters passed to it were the desired

polarizabilities to fit, and the function passed to it was a χ2 function.

A.4.2 Construct Chi-squared

For each set of pseudo-data, theoretical values for the counts, Nth, were computed

using Equation A.21. With the theoretical counts from the various experiments and

helicity states, the theoretical asymmetries, Σth, were calculated using Equation A.15

to Equation A.17, and χ2 was given by:

χ2 =

(
Σex − Σth

Σer

)2

(A.24)
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χ2 was constructed for each experiment, at each polar angle bin, and summed

together to get an overall χ2. In addition there were four selectable constraints on

the minimization that could be added in, γ0, γπ, α+β, and α−β. The experimental

values and errors used for these constraints were the currently accepted world values

for them, as shown in Table A.4.

γ0 γπ α + β α− β
Value -1.0 8.0 13.82 10.5
Error 0.08 1.8 0.4 0.9

Units 10−4 fm4 10−4 fm4 10−4 fm3 10−4 fm3

Table A.4: Experimental values and errors for the various constraints[4]

A.4.3 Minimize Chi-squared

With all of the experiment and constraint components added in, χ2 looks like:

χ2 =
∑

polar bins

[(
Σex − Σth

Σer

)2

2z

+

(
Σex − Σth

Σer

)2

2x

+

(
Σex − Σth

Σer

)2

3

]
+

(
γ0ex − γ0th

γ0er

)2

+

(
γπex − γπth

γπer

)2

+

[
(α + β)ex − (α + β)th

(α + β)er

]2

+

[
(α− β)ex − (α− β)th

(α− β)er

]2

(A.25)

The minimization program ran in a loop, adjusting the values of the parameters,

recomputing the theoretical values of the asymmetries and then the value of χ2,

and finally determined where the minimum value of χ2 occurred. The values of the

parameters at this point were returned as the polarizability values for that pseudo-

data set. Minuit also returned the error in each parameter fitting for that pseudo-

data set. The polarizability errors reported by this study are the averages of each of

these parameter errors over all the sets of pseudo-data (for the results here, 100,000

sets). To determine the errors in the four variables potentially used as constraints,

each variable (γ0, etc.) was constructed with the polarizabilities from an individual
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pseudo-data set result. The values for these constraint variables were then plotted in

histograms for all the pseudo-data sets, and the spreads in the histogram peaks give

the errors in γ0, etc.

A.5 Results

(a) γE1E1 (b) γE1M2

(c) γM1E2 (d) γM1M1

(e) α (f) β

Figure A.1: Sensitivity study polarizability fits at 240 MeV with all four constraints
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(a) γE1E1 (b) γE1M2

(c) γM1E2 (d) γM1M1

(e) α (f) β

Figure A.2: Sensitivity study polarizability fits at 280 MeV with all four constraints

The first study used all four constraints, γ0, γπ, α + β, and α − β, in the fitting

subroutine. After minimization, the resulting values for each polarizability at 240 and

280 MeV were plotted in Figure A.1 and Figure A.2, respectively. The spread in each

of those peaks, which again represents the error in the fitting of each polarizability,

is given in Table A.5.
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(a) γ0 (b) γπ

(c) α+ β (d) α− β

Figure A.3: Sensitivity study constraint fits at 240 MeV with all four constraints

Eγ γE1E1 γE1M2 γM1E2 γM1M1 α β
240 0.271 0.600 0.335 0.511 0.478 0.480
280 0.244 0.512 0.342 0.385 0.402 0.472

Table A.5: Polarizability errors when constrained with γ0, γπ, α + β, and α− β

For each of those fits, the resulting value for each of the four constraints was

also calculated and plotted in Figure A.3 and Figure A.3, for 240 and 280 MeV,

respectively. The spread in each of those distributions, which again represents the

error in that constraint, is given in Table A.6.

Eγ γ0 γπ α + β α− β
240 0.002 0.874 0.055 0.215
280 0.005 0.810 0.174 0.191

Table A.6: Constraint errors when constrained with γ0, γπ, α + β, and α− β
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(a) γ0 (b) γπ

(c) α+ β (d) α− β

Figure A.4: Sensitivity study constraint fits at 280 MeV with all four constraints

A primary concern at this point was the very small error in γ0, which was smaller

by an order of magnitude than its experimental error. This may have been the result

of a stepping size issue in the minimization program, where the already small exper-

imental error for γ0 perhaps appeared to be almost a delta function when compared

to the other experimental errors. In the second study the γ0 and γπ constraints were

turned off, leaving only α + β and α − β as constraints in the minimization. These

results are also plotted for both 240 and 280 MeV in Figure A.5 and Figure A.6, re-

spectively. The reconstructed constraint values for each fit are plotted in Figure A.5

and Figure A.6, for 240 and 280 MeV, respectively. As can be seen the above concern

over γ0 is removed, as it now floats almost uncontrolled. The resulting errors are

given in Table A.7 and Table A.8. Even without the γ0 and γπ constraints, the spin

polarizabilities do minimize near to the ‘nominal’ values. The errors are obviously
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(a) γE1E1 (b) γE1M2

(c) γM1E2 (d) γM1M1

(e) α (f) β

Figure A.5: Sensitivity study polarizability fits at 240 MeV with only α+β and α−β
constraints

larger, but still represent a significant measurement, especially in the light of being a

rather unconstrained fit.
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(a) γE1E1 (b) γE1M2

(c) γM1E2 (d) γM1M1

(e) α (f) β

Figure A.6: Sensitivity study polarizability fits at 280 MeV with only α+β and α−β
constraints

Eγ γE1E1 γE1M2 γM1E2 γM1M1 α β
240 0.954 2.124 1.271 0.810 0.480 0.483
280 0.281 0.719 0.439 0.487 0.479 0.490

Table A.7: Polarizability errors when constrained with α + β and α− β
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(a) γ0 (b) γπ

(c) α+ β (d) α− β

Figure A.7: Sensitivity study constraint fits at 240 MeV with only α + β and α − β
constraints

Eγ γ0 γπ α + β α− β
240 - 2.503 0.050 0.198
280 - 1.394 0.083 0.141

Table A.8: Constraint errors when constrained with α + β and α− β

A.6 Visualizing the Sensitivities

While the study described so far was useful in demonstrating the ability to extract

the spin polarizabilities from the combination of the three Compton scattering ex-

periments, it did not adequately depict the sensitivity the asymmetries have to each

polarizability. Three different ways to depict this were devised.
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(a) γ0 (b) γπ

(c) α+ β (d) α− β

Figure A.8: Sensitivity study constraint fits at 280 MeV with only α + β and α − β
constraints

A.6.1 Single Variation

The simplest way of visually inspecting the sensitivity to the spin polarizabilities is

to plot the asymmetries for the nominal set of values, as well as for the set where one

of the spin polarizabilities has been perturbed by ±1.0×10−4 fm4 from its theoretical

value. These results are shown in Figure A.9 to Figure A.11. From these it’s clear that

Σ2x and Σ2z show a larger sensitivity to γE1E1 and γM1M1 than to the two quadrupole

polarizabilities in the multi-pole basis.

A.6.2 Multiple Variation

The concern was raised that the visualization of varying one polarizability at a

time, does not depict the interplay between terms. Given that the fitting routine

employed in this study assumed a linear dependence on the polarizabilities, ignoring
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Figure A.9: Sensitivity of Σ2x with single polarizability variations. Shown are Eγ =
240 MeV (left plots) or 280 MeV (right plots), varying either γE1E1 (first row), γE1M2

(second row), γM1E2 (third row), or γM1M1 (fourth row), by ±1.0 in the standard
units.
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Figure A.10: Sensitivity of Σ2z with single polarizability variations. Shown are Eγ =
240 MeV (left plots) or 280 MeV (right plots), varying either γE1E1 (first row), γE1M2

(second row), γM1E2 (third row), or γM1M1 (fourth row), by ± 1.0 in the standard
units.
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Figure A.11: Sensitivity of Σ3 with single polarizability variations. Shown are Eγ =
240 MeV (left plots) or 280 MeV (right plots), varying either γE1E1 (first row), γE1M2

(second row), γM1E2 (third row), or γM1M1 (fourth row), by ± 1.0 in the standard
units.
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possible cross-terms, a study into multiple simultaneous variations was requested.

Varying each polarizability by the same value, and then additionally varying a second

term by the same value, some information regarding the interplay between them can

be graphically conveyed. Figure A.12 to Figure A.14 show the results of this study.

The dashed, and solid, lines represent the ‘primary’ polarizability being perturbed

up, and down, respectively by 1.0×10−4 fm4 from its theoretical value. The different

colors represent a ‘secondary’ polarizability being perturbed up by 1.0×10−4 fm4. In

an instance where the sensitivity is solely dependent on the ‘primary’ polarizability in

question, the various colors would be expected to group together, but with the group

of solid lines and the group of dashed lines clearly separated. With this requirement

it’s observed (albeit more difficultly) that Σ3 and Σ2z are mostly sensitive to γM1M1,

and Σ2x is mostly sensitive to γE1E1.

A.6.3 Forward and Backward Polarizability Basis

Using the equations for γ0 and γπ, the spin polarizability basis can be rewritten

in terms of γE1E1, γM1M1, γ0, and γπ. With the experimental values of γ0 and γπ,

the values for γE1E1 and γM1M1 can be fitted without the quadrupole terms. These

plots are produced here as Figure A.15 to Figure A.17. Allowing γ0 or γπ to vary

about their experimental values by their experimental errors, with the variations from

each are added in quadrature, provide the error bands to the plots. This gives an

indication of how truly sensitive the asymmetries are to γE1E1 and γM1M1. As before,

Σ2x is mostly sensitive to γE1E1, while Σ3 and Σ2z are mostly sensitive to γM1M1.

Additionally it’s clear that even with the ‘smearing’ provided by variations in γ0 and

γπ, the quantities γE1E1 and γM1M1 are extractable.
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Figure A.12: Sensitivity of Σ2x with multiple polarizability variations. Shown are
Eγ = 240 MeV (left plots) or 280 MeV (right plots), varying either γE1E1 (first row),
γE1M2 (second row), γM1E2 (third row), or γM1M1 (fourth row), by −1.0 (solid lines) or
+1.0 (dashed lines) in the standard units. The black lines represent the other three
spin polarizabilities remaining at their nominal values, while each color represents
additionally varying one of them by +1.0 in the standard units.
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Figure A.13: Sensitivity of Σ2z with multiple polarizability variations. Shown are
Eγ = 240 MeV (left plots) or 280 MeV (right plots), varying either γE1E1 (first row),
γE1M2 (second row), γM1E2 (third row), or γM1M1 (fourth row), by −1.0 (solid lines) or
+1.0 (dashed lines) in the standard units. The black lines represent the other three
spin polarizabilities remaining at their nominal values, while each color represents
additionally varying one of them by +1.0 in the standard units.
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Figure A.14: Sensitivity of Σ3 with multiple polarizability variations. Shown are
Eγ = 240 MeV (left plots) or 280 MeV (right plots), varying either γE1E1 (first row),
γE1M2 (second row), γM1E2 (third row), or γM1M1 (fourth row), by −1.0 (solid lines) or
+1.0 (dashed lines) in the standard units. The black lines represent the other three
spin polarizabilities remaining at their nominal values, while each color represents
additionally varying one of them by +1.0 in the standard units.
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Figure A.15: Sensitivity of Σ2x with forward and backward polarizability variations.
Shown are Eγ = 240 MeV (left) or 280 MeV (right), varying either γE1E1 (top) or
γM1M1 (bottom), with γ0 and γπ variation producing the band structure.
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Figure A.16: Sensitivity of Σ2z with forward and backward polarizability variations.
Shown are Eγ = 240 MeV (left) or 280 MeV (right), varying either γE1E1 (top) or
γM1M1 (bottom), with γ0 and γπ variation producing the band structure.
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Figure A.17: Sensitivity of Σ3 with forward and backward polarizability variations.
Shown are Eγ = 240 MeV (left) or 280 MeV (right), varying either γE1E1 (top) or
γM1M1 (bottom), with γ0 and γπ variation producing the band structure.
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