

Using Direct Collocation for Solving Bi-level Optimization Problems for Human Walking

Vinh Q. Nguyen1, Frank C. Sup IV1, Brian R. Umberger2
1Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, MA, USA

2School of Kinesiology, University of Michigan, Ann Arbor, USA
Email: umberger@umich.edu

Summary

Determining weights among terms in the cost function for
walking was formulated as a bi-level optimization problem
(BLO). The direct collocation (DC) method effectively
solved the lower level problem, making it practical to solve
the BLO using a nested evolutionary approach.

Introduction

The problem of determining the cost function form for
human walking may be cast as a BLO consisting of two
coupled optimization problems. The lower level optimization
is a standard optimal control of human walking [1] which
solves for the gait solution, while the upper level solves for
the cost function form [2] (e.g., weights among different
candidate performance terms).

The BLO may be solved using a nested evolutionary
approach. Since the nested evolutionary approach is
computationally expensive, it is important that the lower
level be solved in a reasonable time. DC is an efficient
method [1, 3] that may be well-suited to solve the lower
level. Therefore, we evaluated how DC may be used within
the nested evolutionary approach, and further how
parallelization may be used within the BLO and within the
DC algorithm to reduce computation time.

Methods

The problem of determining the weights among three
performance criteria (muscle endurance, stability, and
smoothness) in the walking cost function was formulated as
a BLO. The BLO was solved with a nested evolutionary
approach [2]. The upper level was solved with a genetic
algorithm (GA), and the lower level was solved with the DC
method using a 2-D, 11-DOF, 18-muscle OpenSim model.
For computational efficiency, one step of walking was
simulated on a 15-node grid using an Euler scheme. IPOPT
solver was used to solve the lower level with the sparsity
structure of the constraint Jacobian matrix provided [2].

A, Parallel computing within the GA

GA is well-suited for parallel computing implementation for
speeding up the simulation. Therefore, the GA was
parallelized using the Matlab Parallel Computing toolbox on
an Intel i9 3.5 GHz 10-core computer (ParGA).

B, Parallel computing within DC

In DC, evaluating the dynamic equations at multiple nodes
can be done simultaneously to reduce the computation time.
We evaluated this approach by solving a lower level problem
with parallel computing on the same computer (ParDC). To
evaluate the effectiveness of these parallelization, we ran
three configurations namely: parallelizing GA only (ParGA),
parallelizing DC only (ParDC), and parallelizing both levels.

Results and Discussion

Each lower level simulation, representing a full optimal
control solution for walking, was efficiently solved with
serial computing in about 12 minutes, making it practical to
solve the overall BLO. The solution time was reduced with
parallel computing. For ParGA, the run-time reduced almost
linearly with the number of cores (Fig.1A). ParDC showed
some improvements (Fig.1B), but not as much as in ParGA.
A maximum improvement of 1.35 times speed-up was
achieved with parallelizing on 6 cores.

Figure 1: Speed-up by parallel computing with the GA (A) and DC (B)

Therefore, for the BLO, it is more beneficial to use ParGA
than ParDC. Recently, we solved the BLO in 139 hr using 10
cores with the GA [2]. While ParDC was not as beneficial
for the BLO, standard optimal control simulations may still
benefit from parallel implementation. We tested performance
of ParDC with a more typical grid density of 50 nodes, and
found greater improvements compared to the coarse grid
(15-nodes) used for the BLO (Fig.1B).

Parallel computing for both levels of the BLO should give
further improvements. However, on the single multiple-core
CPU, parallelizing both levels resulted in no improvement
compared with ParGA only. Potentially, on a multiple CPU
computer with each CPU having multiple cores, ParDC on
each CPU and ParGA using multiple CPUs, may yield
greater improvements in performance for solving the BLO.

Conclusions

DC is effective for use within parallel GA for solving BLO
problems. DC may also be sped-up by solving the dynamic
equation constraints in parallel on multiple core CPUs.

Acknowledgments

This work was supported in part by a grant from the National
Science Foundation (IIS-1526986).

References

[1] Ackermann & Bogert (2010), J Biomech, 43(6):1055–60
[2] Nguyen, et al. (2019). TNRSE, (in review)
[3] Lee & Umberger (2016) PeerJ, 4:e1638

