Climate Change

Susan Canty – Animal Science

Jesse Kattany – Environmental Science

Josh Rebello – Building Construction Technology

cow

INTRO

     Right now beef production is responsible for 2.2% of the total greenhouse gas emissions in the U. S. causing climate change (Gurian-Sherman, 2011). This may seem like an insignificant amount but it equates to the yearly emissions of 24 million cars (Gurian-Sherman, 2011). One single cow produces anywhere from 66 to 132 gallons of methane per day, while a car usually holds about 16 gallons of gas (Ross, 2013). We usually think of climate change as connected with urban technology such as transportation and energy use. The vast majority of people are unaware that our food choices have such a large environmental impact and it is only increasing because of us and our consumption demands. Continue Reading

Reducing Wind Energy-Related Mortality in Threatened Raptors

Wind turbines pose a greater threat to threatened species, like the California condor.

Wind turbines pose a greater risk to threatened species, like the California condor.

Sheridan Devlin- Environmental Science

Rebecca Haber- Pre-Veterinary Science

12/06/2016

Rehabilitators took California condors into custody in order to secure their population in the 1980s (Avants, 2016). Recently they released Condor AC-4, a male in the California Condor Recovery Program, back into the wilderness. AC-4 fathered the first captive-born chick and through controlled breeding in captivity, the number of California condors rose from 22 to 435 (Avants, 2016). After spending 30 years in the San Diego Zoo Safari Park, rehabilitators finally gave him a clean bill of health and decided he was fit to return to the wilderness again after blood levels indicated low lead content (USFWS, 2016). AC-4 serves as a reminder that the California condor’s population is still slowly recovering. This threatened species still requires protection, and wind energy–lauded for its environmental benefits–could ironically and unintentionally lead to their extinction (Platt, 2013). Continue Reading

Proposal to Reduce Methane Emissions from Hydraulic Fracturing

Kathryn Gagnon (Pre-Veterinary Science)

Kurt Hunziker (Building Construction Technology)

Corey Wrinn (Natural Resource Conservation)

Image of fracking oil rig (Baleo, 2015)

Image of fracking oil rig
(Baleo, 2015)

Pennsylvanian farmers in poverty are going to sleep at night and waking up as millionaires, having leased their land to gas companies. These overnight successes are called “shaleionaires” because of their newfound wealth due to owning land above shale rock containing natural gas. Individuals receive a payment up front from drilling companies to drill under their properties, in addition to a cut of the profit that these wells generate, when the companies sell the resource. Essentially, this spontaneous income has taken these individuals from poverty, to never having to worry about money. Oil companies typically come into poor, rural towns and pay their way into setting up drilling sites to extract the natural gas they want. Shaleionaires are not the only ones economically benefitting from shale rock; in these poverty-stricken areas, the gas industry is generating jobs for all the people living in the surrounding areas. Shaleionaires, increasing job availability, and incoming profit from the extracted natural gas have resulted in an economic turnover in these areas where businesses were hurting and people were living in poverty. This can be a win-win situation for both the now wealthy local farmer, and the oil company who has access to large amounts of natural gas (Bar-On & Frank, 2010).

Continue Reading

The Effects of Arctic Offshore Drilling on Marine Ecosystems and Wildlife

Mila Calandrino, Natural Resources Conservation

Shauna Goulet, Environmental Science

Brendon DeAlmeida, Building Construction Technology

At the northernmost reaches of our planet lies a vast land that remains virtually untouched by human activity. This pristine environment is home to animals who are able to survive in the harshest conditions on Earth. In the coldest areas of the Arctic, wind stirs up drifts of brilliant white snow, creating the illusion of constant snowfall. Summertime is short, and brings with it the growth of small green shrubs in the southernmost parts of the usually snow-covered tundra. Miles of blue ocean are covered by seasonal blocks of sea-ice that provide critical habitat for polar bears and other unique Arctic organisms. Below the ice is a variety of unique marine organisms. These creatures range in size from giant, black bowhead whales that use their massive heads to crash through the ice to microscopic phytoplankton, the whales’ primary prey

A group of narwhals hunt for prey amidst the seasonal sea-ice.  https://www.sott.net/article/156708-Mysterious-Arctic-whale-under-threat-from-changing-habitat

A group of narwhals hunt for prey amidst the seasonal sea-ice. https://www.sott.net/article/156708-Mysterious-Arctic-whale-under-threat-from-changing-habitat

Continue Reading

America’s Poultry Problem

Lead Author: Stephen Lukas, B.S Environmental Science ’17

Contributing Authors: Maximillian Teibel, B.S Turfgrass Management ’17 and Adele De Crespigny, B.S Animal Science ’17

INSIDE THE BEAST: POULTRY FARMING IN MODERN AMERICA

The camera pans to a paper hung on a sheet metal wall that reads a quote by American philosopher Wayne Dryer: “…the highest form of ignorance is when you reject something you don’t know about.”  Seconds later, farmer Craig Watts leads the film crew through the entrance of the windowless aviary, behind the iron curtain of Watts’ family “partner” farm of the Perdue Company.  Inside, hundreds of featherless, and sickly bird-like creatures cover the feces-ridden cement floor, barely leaving space for Watts and the crew to enter.  This can only be described as a concentration camp for Gallus gallus domesticus – the domesticated chicken.

[youtube]https://www.youtube.com/watch?v=wm5MdlDeEk0[/youtube]

Continue Reading

Optimizing Conventional Buildings

According to Freed (2006) 40% of energy and materials goes into buildings worldwide (“What do you mean by…” section). Here are some of the things we can do to lower that percent. Freed. E. C. (2006, August). As the green architect: Why should I care about green building anyway? Retrieved from GreenBuildings.com

According to Freed (2006) 40% of energy and materials goes into buildings worldwide (“What do you mean by…” section). Here are some of the things we can do to lower that percent.
Freed. E. C. (2006, August). As the green architect: Why should I care about green building anyway? Retrieved from GreenBuildings.com

 

Menli McCreight : Environmental Science

Alec Boucher : Building Construction Technology

Adam Banks : Sustainable Horticulture

 

The amount of energy used for maintaining buildings is immense. In the United States alone, buildings are responsible for three-fourths of electricity consumption, over one-third of total energy use, and one-third of carbon dioxide emissions (Durmus-Pedni & Ashuri, 2010). Overall, 40% of energy and materials goes into buildings worldwide (Freed, 2006, “What do you mean by…” section). Continue Reading

The Health and Safety of Genetically Modified Organisms

Zachary Decoteau,           Sustainable Horticulture
Charles “Chip” Pinder,  Sustainable Food & Farms
Julie F. Webb,                     Environmental Science

?Genetically modified (GM) foods are part of a growing industry that is clouded by controversy, fear and suspicion. Do genetically modified foods pose a threat to human health as many believe? Are they safe to eat? Or do they promote health and provide nutritional benefits, as supporters claim? With so much uncertainty, this new science must be evaluated to accurately determine the relationship between GM foods and human health. Continue Reading

Is fracking really a better alternative to coal?

Brandon Ellingson (NRC)

Abigial Nash (Sustainable Food and Farming)

Irina Polunia (Environmental Science)

 

12/5/16

For the people of Aztec, New Mexico, the introduction of hydraulic fracturing, or fracking, brings promises of job creation and lower energy prices (Barbee, 2015). Hydraulic fracturing is the process of extracting oil and natural gas from rocks in tight geological formations through high pressure pumping of water and various chemicals (McJeon et al., 2014). The resulting so-called ‘transitional fuel’ obtained via fracking is arguably cleaner than coal, emitting 45% less carbon dioxide per energy unit than coal production (Lomborg, 2012). For the United States, fracking provides an opportunity to achieve energy self-sufficiency and reduce carbon dioxide emissions. Furthermore, hydraulic fracturing is cheaper than coal production (Schneising et al., 2014). Despite the idealistic promises of the fossil fuel industry, fracking instead exceeds the threshold where it would contribute less greenhouse gas emissions than coal production (Heath et al., 2013, Sanchez et al., 2015) and leads to substantial air pollution due to natural gas leakage around extraction sites. This is the case for Aztec, New Mexico, where fracking is a hazard to human health and puts the climate and community benefit of fracking into question (Barbee, 2015).       Continue Reading

Arctic Oil Drilling: Destruction of the Ecosystem from the Bottom Up

Arctic oil drilling poses a serious threat to wildlife and ecosystem health

Abigail Thomas: Environmental Science

Benjamin Sharaf: Natural Resource Conservation

Mike Piper: Turfgrass Management

The spill occurred about 5,000 feet below the ocean’s surface, where it spread devastation and chaos across the area’s ecosystem. Wildlife of all kinds washed up to shore covered in black muck (Frost, 2016).  They were overcome by the foreign liquid that seemed to consume them.  The day was April 20, 2010, when the worst oil spill in our nation’s history occurred (Frost, 2016).  After over 3 million barrels of oil leaked across the coast of Louisiana, Mississippi, Alabama, and Florida hundreds of thousands of animals and even 11 human beings had been killed (Frost, 2016). This event crippled the ecosystem and created lasting effects across every trophic level that will be felt for many more years to come (Frost, 2016). The sad part is we may never learn from our mistakes. After we watch something like the Gulf oil spill happen, we are still considering allowing more oil companies to spread their territory (in other words by drilling in more frequently and in different areas).  More specifically oil companies are trying to lay claim to the Arctic, one of the last untapped resource of oil (“Arctic Oil Drilling,” (n.d.)). If we care about our planet and the creatures that reside here, we can not let this happen. The Arctic is home to millions of organisms that pose amazing benefits to our earth (Whelan, 2016). If something happened in the Arctic like it did in the Gulf of Mexico, there’s no telling if the area would ever recover. The risk is far too great just to make money, even if an oil spill is unlikely. The only way to make sure this never happens is to create a treaty. This would entail all the countries that will stake claim to the Arctic, to never allow any drilling. The Arctic is a extremely fragile ecosystem that needs to stay the way it is in order to preserve the vast beauty and creatures it protects. Oil drilling in the Arctic will negatively impact the health of nearby wildlife and creation of a treaty to leave the arctic alone, is the most reasonable solution. Continue Reading

The Effects of Antibiotic use on Livestock Animals, Groundwater and Humans

Julia Hathaway (Environmental Science)4323

Lauren Rae (Animal Science)

Evan Lunetta (Forestry)4323

Have you ever taken a bite out of your favorite food or sipped tap water and thought to yourself, “is this going to make me sick?”  Perhaps poured an ice-cold glass of water from the sink, gulped a refreshing sip and wondered if it could kill you?  Most people would say no.  Unfortunately, in just a short-while, this will no longer be a question we can answer no too.  The New York Times posted an article just a few days ago titled, “Fear, Then Skepticism, Over Antibiotic-Resistant Genes in Beijing Smog,” reporting smog over China containing antibiotic resistant genes. The Times described the smog spreading through the city, “like pathogens in a pandemic disaster movie” (Tatlow, 2016, para. 5). Chinese citizens are scared, especially for their children. The article quoted a young Chinese actress saying she wanted to pick up her 11-month-old daughter and run away because the smog would make it easier for her daughter to become sick (Tatlow, 2016). The most alarming part is the Chinese are so used to their disease ridden air, the antibiotic resistant contaminated air is only of mild concern given their other current environmental hazards (Tatlow, 2016). As alarming as that truth is, the Chinese are not the only people impacted by antibiotic resistant bacteria. The Center for Disease Control stated that antibiotic resistant bacteria now affects 2 million Americans each year and results in 23,000 deaths (CDC, 2016, para. 2).  The CDC estimates by 2050 antibiotic resistance will have killed 10 million people worldwide (Walsh, 2014, para. 1).  Imagine, in just a few more decades as human population reaches an all time high, death by antibiotic resistant bacteria will become even more common than death by cancer and unlike cancer, there is no hope of treatment (Walsh, 2014). Continue Reading