Is Antibiotic Feed in CAFOs a Threat to Human Health?

Kyle Gillen, Building and Construction Technology

Aliza Ahlen, Animal Science

Thomas Novotny, Wildlife Ecology and Conservation

 

It is hard to believe, but there was a time when a cut could kill you. We are seeing this happen again; where 2 million Americans a year are infected with bacteria that can not be killed with any known antibiotics (Young 2013). Of the 2 million Americans, 23,000 of them die (Young 2013). One case is Addy’s story. Her mother, Tanya, tells us about the night it all started, her healthy 12 year old complained of pain in her leg. Being athletic her mother didn’t think much of it. But Addy got up all night complaining of severe pain her mother knew something was up. In the morning she brought her to the hospital they said she had a viral infection and sent her home. Addy’s fever got worse and the pain spread throughout her whole body. Tonya knew it was something more than an infection, so she went to another hospital that specialized in child health. Addy was put into the ICU and was on an oxygen mask and diagnosed her with pneumonia. By the morning she was on a ventilator. Dr. Sean Elliott is the Infectious disease specialist at the hospital Addy was at. When Dr. Elliott saw Addy for the first time she was covered in little boils all over her body he identified its as MRSA. The type of MRSA that Addy had was one that doctors call community associated MRSA meaning kids pick it up from places like playground through small cuts. MRSA is a bacteria that is resistant to most if not all types of antibiotics making very deadly to humans. Her lungs where not working from all that was going on in her body so they had to put her on life support.  She then contracted in her lungs another staphylococcal infection from the tubs but this one was even more resistant to antibiotics then MRSA. they tried the known cures but none worked. The bacteria that Addy had was resistant to all known antibiotics. Addy had no other choice than to have the infection surgically removed and hope for the best. The doctors did not think it was safe for her to have this done because her chance of survival was about 0%. The doctors were now in a position of medical ethics; should they risk the use of a limited resource on a patient that has almost 0% chance of survival.  Her mother pushed for the lung transplant. Addy is now 14 years old girl that has to take eight pills three times a day and has a 15% chance of living past the next 3 years and a 5% chance living over the next 5 years. Addy’s mother said it was not a cure but a gift of extra time with her daughter (Young 2013).

Overuse of antibiotic feed in concentrated animal feeding operations (CAFOs) is a threat to human health, therefore its use needs to be limited to treatment of disease and eliminated as a growth promoter by the FDA. Humans come in contact with bacteria every day of their lives. Some of this bacteria makes them ill, and the body’s immune system can easily fight off this infection. The more important bacterial infections to consider though, are those that require treatment with antibiotics, and more importantly those that are resistant to antibiotics. Every year 2 million experience serious illness due to untreatable bacterial infection and 23,000 people die because the bacteria that made them sick is resistant to most antibiotics that can be offered (Young 2013). Although this is a problem, the serious issue is when the bacteria is spread to a large group of people and it cannot be treated in any way. This is what is known as a superbug and it is the inevitable consequence we will face if CAFOs continue to overuse antibiotics in the feed of the nation’s largest source of meats. It is important to consider that although antibiotic feed is supportive in the cause of superbugs, it is not the only way bacteria becomes antibiotic resistant. The healthcare industry plays a similar role in that doctors typically over-prescribe antibiotics for human infections. This combination of overuse in both animal feed and human treatment are creating the risk of a widespread disease.

The benefits of antibiotic feed use in CAFOs are undeniable. Animals grow at a greater rate than they would while being fed natural antibiotic free feed, allowing farmers to reduce their operating costs, and therefore increase their profit. A study on antibiotic feed confirmed that poultry fed antibiotics showed significantly higher weight gain over non-antibiotic feed (Settle et al. 2014.) Providing the animals with antibiotics also acts as insurance for the farmers. Their animals are now pre-treated for a disease they may or may not come in contact with. If a bacteria is present in one animal, it could spread and kill an entire farmer’s animal population resulting in huge profit losses. Because of this risk of disease, farms can feed animals antibiotics and greatly reduce their animal’s chances of contracting a disease. When reviewing the health risks associated with antibiotic feed use, it is important to understand the financial incentive for farmers to continue using these feeds. Contributing to the use of antibiotics as a growth promoter has been the need to provide more meat to the population. With a current world population of 7 billion people, growing animals at a faster rate helps to meet the needs of the meat market. Americans eat on average more than 130 pounds of mean every year (Molla 2014). The veterinary drug industry also reflects the increased need for greater livestock growth rate. In 2010, the market was $20.1 billion and is expected to double by 2018 (NCBI 2014).

The problem of the overuse of antibiotics did not come until farmers noticed that animals would grow faster and larger with less feed. This in turn made the profit from the livestock that the farmers raised higher. Therefore the farmers could sell at a cheaper price to the consumer. This made it possible for everyone to have a chicken on the table for dinner every night. The farming industry uses about 30 billion pounds of antibiotics a year in feed and/or water. (Young 2014) There is a study being done in Texas by Texas A&M looking at bacteria resistance in livestock fecal.

The use of antibiotic feed on concentrated animal feeding operations is helping to facilitate antibiotic resistance. Bacteria from CAFOs is entering the general population through airborne particles and physical interactions with farm employees. In the research article “Antibiotics, bacteria, and antibiotic resistance genes”, McEachran et al. (2015) argue that antibiotic use in feed can cause impacts on surrounding ecosystems near animal farms via aerial transportation. The authors argue that antibiotic bacteria particles can be found in the air surrounding open-air animal farms. This is supported by their research stating Monensin, a typical antibiotic, was detected in 100% of particulate matter downwind from a beef cattle feed yard at a level of 1,800 ± 370 ng/g particulate matter. McEachran et al. (2015) further argue that antibiotic bacteria can survive long enough to be consumed by surrounding plants and agriculture. They write that half-lives of the antibiotic tetracycline in soil have a range from 30 to 180 days in soil-slurry mixes. McEachran et al. (2015) help support the claim that antibiotics are overused with their evidence that antibiotics can be spread aerially to other organisms. This research is particularly important because it shows the widespread impacts of antibiotic use beyond that of direct transmission from animal to human through consumption. Another important issue this article addresses is the inability to control antibiotic spread. Because of the large scale of beef cattle farms, it would be almost impossible to prevent winds from spreading antibiotic particles, suggesting the only solution would be to limit their use. In Osadebe (2013) Half (55%) of the workers averaged 4 or more hours a day with the pigs  held other non-farming jobs such as in the retail and education sector and Two (22%) reported coming in contact with at least 40 people daily at another job. Now if those two farm workers spread Staphylococcus aureus via fluid exchange and/or physical contact with other people then they come into contact with others, the bacteria will now spread throughout the general local population. If undetected or untreated it will then spread into the world population.

Antibiotic resistant bacteria is causing serious illness and death in humans. A drug-resistant bacteria known as CRE highlights the dangers of superbugs and gives a look into the possible implications these bacterias could have. This bacteria is present in 4% of U.S. hospitals and 18% of long-term care facilities, and has also been reported in hospitals across 42 states. CRE has proven that it can kill half of the people infected by it.  (Brumfield 2015). Another antibiotic resistant bacteria is known as C. difficile, which causes 250,000 infections every year and has been attributed to nearly 15,000 deaths (Almendrala, 2015.) Including these two examples,the CDC has identified 18 bacteria with antibiotic resistance that have proven their ability to cause illness or death.

So why should everyday healthy people care about how antibiotics are using and the ever increasing numbers of resistance because do to the resistance in the bacteria we have fewer and fewer ways to treat common everyday bacteria that we come in contact with. You should care because 700,000 worldwide die from bacteria that are resistance and 23,000 in the US alone. The CDC projects “the number of deaths per year would balloon to 10 million by 2050. For comparison, that is more than the 8.2 million per year who currently die of cancer and 1.5 million who die of diabetes, combined” (MCKENNA 2015). “Those deaths would cost the world up to 3.5 percent of its total gross domestic product, or up to $100 trillion by 2050” (MCKENNA 2015). People should not only care just to save their own lives but the lives of others and the economical cost of stopping the overuse of antibiotics in CAFOs is cheaper than than trying to defeat a global superbug.

In order to stop the rise in bacterial resistance from the overuse of antibiotics there needs to be regulations put in place that make the use of antibiotics strictly monitored. This would be monitored by the FDA by making it so the only people that could buy and administer drugs are veterinarians. We also propose that the antibiotics would be treated as a controlled drug and logged out with an animal’s name or number corresponding to the reason for ministering the drug.

Mainstream science has accepted the fact that antibiotic resistant bacteria is a serious problem for mankind, while others would disagree. Farmers state the cost of using antibiotic feed in the long run costs less than to not use antibiotics. Livestock would have to be cared for a longer period of time than if they were using antibiotic feed as a growth promoter like CAFOs are doing now. Consumers do not support the reduction of antibiotic use because they believe the price of meat will increase once antibiotics are not being used anymore. In addition, pharmaceutical companies do not want the end of antibiotic use in CAFOs because it would hurt their profit margin.

A study conducted by the Pew Campaign states “In Denmark, like in the U.S., the trend in food animal production favors an industrial model with fewer farms producing more food animals per farm. The WHO report has clearly concluded that eliminating AGPs in such a system does not have significantly adverse economic consequences. Other recent studies agree with such findings. A peer-reviewed economic report produced for the Pew Commission on Industrial Farm Production by the University of Tennessee’s Agricultural Policy Analysis Center found that when accounting for societal and environmental costs, industrial swine farming methods are usually more expensive than alternative methods such as hoop barns, which typically do not involve the use of antibiotics for growth promotion. An economic analysis conducted on the U.S. poultry industry by researchers from Johns Hopkins University also was consistent with the WHO’s findings. The researchers concluded that the costs of production are reduced when AGPs are not used”. Several highly regarded institutions conducted similar studies and all came to the same conclusion that the use of AGP’s on livestock is either more costly for the farm and creates a worse product, than if antibiotics were not overused.

Pharmaceutical companies and U.S. food animal production industry “claim that the ban was costly and ineffective, the World Health Organization (WHO) found that the Danish ban reduced human health risk without significantly harming animal health or farmers’ incomes. In fact, Danish government and industry data show that livestock and poultry production has increased since the ban, while antibiotic resistance has declined on farms and in meat.” Pharmaceutical companies are afraid of losing money with a ban of overuse of antibiotics in CAFOs, even if that means doing the wrong thing to benefit themselves rather than  not being greedy in the short term and helping improve human health quality in the long term.

Antibiotic resistant bacteria or superbugs are becoming a more frequent occurrence because of the overuse of antibiotics, not just in CAFOs but it is a big part of the problem that can be stopped. The use of antibiotics as growth promoters in livestock is the overuse that creates antibiotic resistant bacteria. That bacteria is then transferred to farm workers and the surrounding environment through wind particulates, fecal matter, and water runoff. All of these modes of egress for the bacteria can have direct contact with the surrounding communities and then the general population and start spreading like wildfire if left unchecked and cause illness and death at a rate unheard of in a time of modern medicine.

 

References

 

Almendrala, A. (2015, ). C-diff kills 15,000 people A year. feces donations may change that. The Huffington Post

 

Brumfield, B. (2015, ). Understanding CRE, the ‘nightmare’ superbug that contributed to 2 deaths in L.A.. Cable News Network

 

Hao, H., Cheng, G., Iqbal, Z., Ai, X., Hussain, H. I., Huang, L., … Yuan, Z. (2014). Benefits and risks of antimicrobial use in food-producing animals.Frontiers in Microbiology, 5, 288. http://doi.org/10.3389/fmicb.2014.00288

 

McEachran, A. D., Blackwell, B. R., Hanson, J. D., Wooten, K. J., Mayer, G. D., Cox, S. B., & Smith, P. N. (2015). Antibiotics, bacteria, and antibiotic resistance genes: Aerial transport from cattle feed yards via particulate matter. Environmental Health Perspectives, 123(4), 337-343.

 

Molla, R. (2014, ). How much meat do americans eat? then and now. The Wall Street Journal

 

Osadebe, L. U., Hanson, B., Smith, T. C., & Heimer, R. (2013). Prevalence and characteristics of Staphylococcus aureus in Connecticut swine and swine farmers. Zoonoses & Public Health, 60(3), 234-243. doi:10.1111/j.1863-2378.2012.01527.x

 

Settle, T., Leonard, S. S., Falkenstein, E., Fix, N., Van Dyke, K., & Klandorf, H. (2014). Effects of a Phytogenic Feed Additive Versus an Antibiotic Feed Additive on Oxidative Stress in Broiler Chicks and a Possible Mechanism Determined by Electron Spin Resonance. International Journal of Poultry Science, 13(2), 62–69. http://doi.org/10.3923/ijps.2014.62.69

Impact of Antibiotic use in Concentrated Animal Feeding Operations on Human Health

Jessica Michalek, Pre-Veterinary Sciences

John McCluskey, Plant and Soil Sciences

Kelsey Beauregard, Natural Resource Conservation

Salmonella is a disease that is becoming increasingly more common and dangerous. A young boy named Noah Craten was just 18 months old when he was infected with salmonella. This particular strain of salmonella was antibiotic resistant and very difficult to treat. He had to be hospitalized and undergo brain surgery due to a large mass of blood forming in his brain that nearly killed him. He had a line placed directly in his heart and received antibiotics for seven weeks in order to save his life. As a result  the left side of his face now sags and he has a permanent scar on the top of his skull. He also has cerebral spinal fluid in his brain that must be monitored frequently by a physician. This boy suffered greatly and he is not the only one. This particular salmonella outbreak led to double the normal hospitalization rates due to the antibiotic resistance (Terry, L., 2015).

The effects of foodborne diseases are already serious. In the United States alone, salmonella species infections are responsible for about 1.4 million illnesses, 15,000 hospitalizations and 400 deaths annually (Voetsch et al., 2004). Increased prevalence of a multidrug resistant type of salmonella has been found, this poses a major health concern to humans as it is making it harder to treat (Aarestrup et al., 2007). This type of salmonella is an uncommon cause of salmonella in humans worldwide, however in recent years this type now ranks among the most frequently identified salmonella type in several countries. It was the fifth most common type isolated from retail meat in the United States (Aarestrup et al., 2007). This shows that the acquired drug resistance of salmonella enabled it to survive in new environments. There was a reported increase in the proportion of human infections from this type of salmonella  in Thailand, from 0% in 1992 to 2.4% in 2001 (Aarestrup et al., 2007, p. 726). This is significant as it shows an increase in both prevalence and potency of a bacteria due to drug resistances, and it is a prime example of how antibiotic resistance enabled a once irrelevant type of bacteria to become strong enough to pose a threat to human health.

Noah Craten was infected with salmonella from a package of Foster Farms chicken raised on concentrated animal feeding operation (CAFO). When we think of farms we tend to imagine a lot of land and animals grazing. This is not the case for CAFOs. CAFOs are operations where large groups of animals are fed specific diets and not grazing on the land. These operations must have thousands of animals to be considered concentrated. A poultry CAFO would have over 82,000 animals on site and a swine operation would have over 2500 animals (“Natural Resources Conservation Service”, n.d.). These operations have incredibly large numbers of animals going through them and all these animals are fed a specific diet chosen by the producer. The main goal of these operations is to produce large animals to sell for slaughter.

Since CAFOs have such a high volume of animals the animals are more likely to get sick. In order to avoid this, producers put subtherapeutic levels of antibiotics in the animals feed. Feeding subtherapeutic levels of antibiotics means that the producers are not using them to treat an illness, but to promote growth and production in the animals (Gunther, 2013). When you treat an animal with low levels of antibiotics it wipes out all the weak bacteria but the levels are not high enough to destroy the stronger bacteria. This leads to us selecting for only the strongest bacteria that are naturally resistant and will pass their genes on (Nowakowski, 2015). This is a problem that can affect everyone in some way regardless of whether or not you eat meat.

CAFOs have been found to create antibiotic resistance. One study tested over thirty different CAFOs for nine different antibiotic resistant genes and resistance was found at all locations (Brooks, Adeli, and McLaughlin, 2014). Another study sampled retail ground meat and found 84% to be resistant to at least one antibiotic and 53% to be resistant to at least three (White et al., 2001, p. 1148).  A third study found bacteria that is not only resistant to the average antibiotic, but is also cross resistant to an antibiotic used as a last resort to treat multidrug-resistant infections (Chapin, Rule, Gibson, Buckley, and Schwab, 2005).  They also tested for resistance of different antibiotics, some that are used in the swine industry and one that is not (Chapin et al., 2005).  Their results show that CAFOs do indeed create antibiotic resistance because the antibiotics used in CAFOs had resistance whereas the antibiotic that was not used had no resistance (Chapin et al., 2005, p. 139). One final example of antibiotic feed leading to resistance is the use of a class of antibiotics, in poultry, which led to the development of resistant strains (Cronin, 2013). Previously, this class of antibiotics were not used by CAFOs and there was not resistance found;  however, once CAFOs began using them, they found resistance (Cronin, 2013). There is a consensus among scientists that CAFOs create antibiotic resistance.

CAFOs are not only creating antibiotic resistant bacteria but they inevitably spread it to the human population. Transfer occurs in multiple different ways including through meat and the environment. Samples of ground meat tested positive for different strains of salmonella and  antibiotic resistance.  Five different strains of salmonella were identified in the meats that are resistant to nine different types of antibiotics (White et al., 2001). If someone eats this meat and the salmonella is not killed they would get very sick with an antibiotic resistant bacteria. This bacteria is difficult to treat and may not respond to a simple round of antibiotic treatment. These meats all came from different CAFOs and had been processed at different slaughterhouses showing that this is a widespread problem (White et al., 2001). It is not just one or two operations causing the problem it is the whole system of feeding antibiotic feed. Research was done to test the quality of air inside a swine CAFO. They found that there were very high levels of antibiotic resistant bacteria inside the operations themselves (Chapin et al., 2005). Research further proved this by comparing levels of antibiotic resistant bacteria inside the CAFO to areas upwind from the facility; they found concentrations of multidrug resistant bacteria to be 2.1 times higher inside the facility (Gibbs et al., 2006, p. 1034). This means that people who work in the facility are exposed to these high levels of resistance everyday and could easily transmit an antibiotic resistant strain to people outside the facility. Inhalation of these bacteria could lead to the sick person having almost no treatment options (Chapin et al., 2005). These multidrug resistant bacteria are not just found inside the operations, they are also found in the air around the facility and affect the nearby communities. It was found that the same high concentrations of multidrug resistant bacteria can be found 150 meters downwind of the facility (Gibbs et al., 2006). The antibiotic resistance can truly affect anyone. Not eating meat does not protect you from exposure to antibiotic resistant bacteria.

The United States needs to enforce bans on antibiotic feed used in livestock operations, especially restricting the use of antibiotics that are vital to human medicine. It is important to monitor our levels of antibiotics and what we are using them for. The United states currently does not keep records on antibiotic usage so farmers are not being held responsible for what they use. In order to get a handle on our antibiotic use we need to ban the subtherapeutic use of antibiotics and even regulate what antibiotics are given to livestock to treat diseases. It would be best to use ones that are not common in human medicine. Most importantly the United States needs to track its usage in order to make a difference.

In Europe antibiotic resistance has already been noticed and steps have been taken towards fixing it. Denmark in particular has made huge strides in reducing their antibiotic resistance and the United States should follow their lead. The use of antibiotic feed in CAFOs leads to more antibiotic resistant bacteria being spread and adopting the same standards as Denmark will help protect human lives in the United States. Denmark is the world’s leading exporter of pork and they banned all subtherapeutic uses of antibiotics in swine by 1999. Since these bans they have found significant decreases in levels of antibiotic resistant bacteria (Levy, 2014). “From 1992 to 2008, antibiotic use per kilogram of pig raised in Denmark dropped by more than 50%. Yet overall productivity increased. Production of weaning pigs increased from 18.4 million in 1992 to 27.1 million in 2008” (Levy, 2014, para. 15). They did not just ban the use of antibiotics for growth promotion, but also limited their use for disease prevention (Charles, 2012). While cost of raising these animals has gone up by about $1.14 the animals have lower disease rates and more efficient production (Levy, 2014, para. 16).  Human health should be prioritized over economic gain. Denmark closely regulates the amounts of antibiotics used and the types given to the animals.

Despite all of the scientific consensus on antibiotic resistance and how it poses a serious problem for humans humans, there are still some concerns that should be addressed.  One major concern is if the use of antibiotics is stopped then the cost of meat will increase. In 1999 it was estimated that it would have cost CAFOs $45.5 million if the drug use was banned (PBS, 2014, para. 18). However, this is including their profit, not all of that would be passed on to consumers. Also, feed that does not contain antibiotics costs 1 penny less per chicken, with the cost also being less in other animals (Parsons, 2007). Unfortunately, the American people may need to accept that they will have to pay a bit more for their meat in order to properly take care of their health like Denmark has. Denmark also managed to increase their production using their new system and the same could happen in the United States (Levy, 2014). If no change occurs, drug resistance will become more of a problem then it already is and we will be unable to find cures for our sickness, which would result in families spending hundreds if not thousands of dollars trying to find an answer to the sickness.

 A second concern of sceptics is the ever growing demand for more food. Ultimately, the use of antibiotics in feed only leads to about a 3 percent increase in size of the animals, which is really not substantial (PBS, 2014). As stated previously, Denmark is still the lead exporter of pork despite banning all subtherapeutic antibiotic use. CAFOs first came into existence in the 1970’s by chicken producers and were created so they could have a large number of animals and decrease production costs (History of CAFOs, 2011). However, we do not need them in order to produce enough animals to feed our population. Denmark evolved their way of farming so that they could still produce large amounts of pork for the population. So, despite popular belief antibiotic feed is not the answer to how we will feed the growing population.

Another concern to address is people wondering how we will treat sick animals without the use of antibiotic feed. This is actually quite simple to address. The main concern of antibiotic resistance comes from antibiotic feed, not injections, which is what is used to treat sick animals. Antibiotic feed is used as a growth hormone and preventative measure, not to treat sickness. As long as the antibiotics are used to treat disease and this is monitored by a veterinarian to make sure the antibiotics are not misused they can still be used to treat diseases in animals.

One final concern could be whether or not the way Denmark is handling eliminating antibiotic feed and resistance is transferable to the United States. The answer to that concern is yes, the American people just need to focus their priorities on protecting their health and their family’s health. Denmark simply changed the way they look at farming. In order to be successful without antibiotic feed they had to move away from the CAFO style of production. When animals are all kept close together there is a higher risk of disease spread, therefore they have moved into a more spacious style of farming (Kennedy, 2011). The United States could easily do this as we have significantly more land than Denmark that we could put towards farming. Instead of containing lots of animals in small spaces we could allow them to have space and significantly decrease the need for antibiotics in the first place.

Antibiotic resistant bacteria are a major health threat because they make it harder to treat illnesses caused by these bacteria. CAFOs are closed off, high volume operations and the animals in them are more likely to get sick. The sub-therapeutic levels of antibiotics which are put into these animals feed has led to an increase in antibiotic resistant bacteria, this is why the US needs to adopt the same standards as Denmark and ban all sub-therapeutic use of antibiotics in livestock operations. Doing so will decrease antibiotic resistant bacteria levels and make livestock products safer for humans.

 

References

 

Aarestrup, F.M., Hendriksen, R.S., Lockett, J., Gay, K., Teates, K., McDermott, P.F., …Gerner-Smidt, P. (2007). International spread of multidrug-resistant Salmonella Schwarzengrund in food products. Emerging Infectious Diseases, 13(5), 726-731. doi: 10.3201/eid1305.061489

Brooks, J. P., Adeli, A., & McLaughlin, M. R. (2014). Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water Research, 57, 96-103. doi:http://dx.doi.org/10.1016/j.watres.2014.03.017

Chapin, A., Rule, A., Gibson, K., Buckley, T., & Schwab, K. (2005). Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environmental Health Perspectives, 113(2), 137-142. doi:10.1289/ehp.7473

Charles, D. (2012, March 23). Europe’s Mixed Record on Animal Antibiotics. New England Public Radio. Retrieved from http://www.npr.org/sections/thesalt/2012/03/23/149221287/europes-mixed-record-on-animal-antibiotics

Cronin, J. (2013, September 17). Antibiotics & Human Disease: The CAFO Connection. Retrieved April 03, 2016, from https://earthdesk.blogs.pace.edu/2013/09/17/antibiotics-human-disease-the-cafo-connection/

Gibbs, S. G., Green, C. F., Tarwater, P. M., Mota, L. C., Mena, K. D., & Scarpino, P. V. (2006). Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined or concentrated animal feeding operation. Environmental Health Perspectives, 114(7), 1032-1037.doi:10.1289/ehp.8910

Gunther, A. (2013). Is The Antibiotic Free Campaign Really “Antibiotic Free” Or Will It Just Create A Two Tier Food System? Retrieved from http://animalwelfareapproved.org/2013/04/01/is-the-antibiotic-free-campaign-really-antibiotic-free-or-will-it-just-create-a-two-tier-food-system/

History of CAFOs. (2011, October 22). Retrieved from http://www.world-foodhistory.com/2011/10/history-of-cafos.html

Kennedy, M. (2011, June 21). Finally: Putting the CAFO out to Pasture. Retrieved from https://thesesaltyoats.com/posts/food_culture_and_politics/finally-putting-the-cafo-out-to-pasture

Levy, S. (2014, June). Reduced Antibiotic Use in Livestock: How Denmark Tackled Resistance. Spheres of Influence, 122(6). Retrieved from http://ehp.niehs.nih.gov/122-a160/

Natural Resources Conservation Service. (n.d.). Retrieved from http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/plantsanimals/livestock/afo/

Nowakowski, K., (2015, February 3). Should we continue to feed antibiotics to livestock? National Geographic. Retrieved from http://news.nationalgeographic.com/2015/02/150213-antibiotic-resistance-animals-ngfood/

Parsons, T. (2007, January 5). Adding Antibiotics to Chicken Feed Not Cost-Effective. Retrieved from http://www.jhsph.edu/news/news-releases/2007/graham-antibiotics.html

PBS. (2014). Modern Meat: Antibiotic Debate Overview. Retrieved from http://www.pbs.org/wgbh/pages/frontline/shows/meat/safe/overview.html

Terry, L. (2015, May 1). Scarred For Life. Retrieved from http://www.oregonlive.com/usda-salmonella/chapter-2.html

Voetsch AC, van Gilder TJ, Angulo FJ, Farley MM, Shallow S, Marcus R, et al. (2004). FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clinical Infectious Diseases. 38 (3). doi: S127–34 10.1086/381578

White, D. G., Zhao, S., Sudler, R., Ayers, S., Friedman, S., Chen, S., . . . Meng, J. (2001). The isolation of antibiotic-resistant salmonella from retail ground meats. New England Journal of Medicine, 345(16), 1147-1154. doi:10.1056/NEJMoa010315

Free-Range Eggs: Are They Actually a Healthier Option?

Rebecca DeMederios (Animal Science), Kyle Lunetta (Building and Construction Technology), Holly Sullivan (Animal Science), Alan-Michael Turner (Turfgrass Science and Management)

“A warning about Salmonella in eggs was issued today after two outbreaks of food poisoning, which have already claimed one life” (Daily Mail News, 2015). This past fall in the southeast and northwest of England, a Salmonella outbreak swept through, resulting in over 150 reported cases, and one death. Salmonella has become synonymous with eggs, and for good reason. “The Centers for Disease Control and Prevention estimates that over 1 million people in the U.S. contract Salmonella each year, and that an average of 20,000 hospitalizations and almost 400 deaths occur from Salmonella poisoning” (Marler Clark, 2016). It is for this reason that we must be vigilant regarding our egg handling practices, especially in free-range systems where the risk of salmonella exposure is significantly higher. Continue Reading

Do concentrated animal feeding operations (CAFOs), or “factory farms,” negatively impact the health and welfare of livestock?

Inside a hog CAFO.  [Untitled image of pig CAFO] Retrieved from http://wuwm.com/post/opposition-flares-around-supersize-pig-farm-proposed-northern-wisconsin#stream/0

Inside a hog CAFO. [Untitled image of pig CAFO] Retrieved from http://wuwm.com/post/opposition-flares-around-supersize-pig-farm-proposed-northern-wisconsin#stream/0

Jack Tallboy (B.S. Pre-Veterinary Science), Rachel Spurgeon (NRC, Environmental Conservation), Miranda Cashman (B.S. Geology)

What do 7 billion people share in common? A group that size, with all the diversity of races, religions, cultures, and languages, still unites over a meal. Access to food is a central issue and growing problem in our world.  The harder question is, how do we produce the food needed for the world’s booming population without compromising the traditional family farm and healthful agricultural practices?  Growing and raising enough food while still holding to good animal health and welfare practices becomes increasingly difficult as the global population increases. Continue Reading

The Threat of Reintroduced Wolves to Livestock in Yellowstone

The year is 1926.  In Yellowstone National Park, gunshots crack through the air. Then there is silence as the last remaining pack of wolves in the park falls.  For over fifty years, these predators were viewed as just that – wild animals that ate people and livestock – and were hunted to the point of local extinction.  It would take another fifty years for people to realize that something was wrong, out of balance, in the park since the extermination of these iconic carnivores (National Parks Service [NPS], 2015). The animals, the plants, even the very geography of the park changed. Elk overpopulated the region, devouring trees and shrubs. With less plant life, birds were left with no places to nest. Rivers eroded the soil, becoming wider, shallower, and warmer without the shade and roots of the trees. Eventually, only one beaver dam was left, damaging rivers and aquatic life even more. Coyotes flourished without competition from their larger cousins, and decimate small mammal populations, leaving little behind for raptors, foxes, and badgers (Chadwick, 2010). The Yellowstone ecosystem was collapsing. And so from 1995 to 1996, thirty-one wolves were released back into the park with the hopes of restoring balance to this dying ecosystem (NPS, 2015). Continue Reading

Grass-Fed Beed: Better for the World Around Us

Cows

Cows grazing in pasture at sunrise.

 

Aliza Majewski—Pre-veterinary Science

Ayana LaSalle—Sustainable Food and Farming

Rachel Foley—Animal Science

When Betty Jo learned that she needed to choose between veganism and her health, she made the only sensible decision—she began eating meat. Betty Jo was a vegan for 14 years, however, deficiencies in her diet developed that could only be overcome through the consumption of meat. She called the Whisnant family, a local farm she found online, in hopes of purchasing a cow for herself. Thus began a waterfall of events that would change the Whisnant family forever. With Betty Jo’s call, the Whisnant’s realized there was a growing consumer demand for beef that is raised humanely, healthily, and outside of factory farms and that they could easily revamp their farm to meet this demand. With proper marketing and management, pasture-raised cattle would allow them to have the successful future farm they desired. In their current financial state, there was not enough demand and income to keep the family working at the farm, but grass-fed beef would change that. This realization was the turning point, the future that could support the entire family. The Whisnant family knew then, as did Betty Jo, that grass-fed beef was better for the animal, the consumer, and the environment. Betty Jo was vehement that, if she was going to eat meat again, it would only be the best, not only for herself but also for the animals and the planet. And so began the family company: American Grassfed Beef. (Whisnant, M. & Whisnant, P., n.d.) Continue Reading

Veal Calves

You’re at an upscale Italian restaurant and decide to splurge on veal parm, but have you ever thought of where that meat comes from? That calf you are enjoying was taken from it’s mother hours after birth and for it’s short time on this earth fed an inadequate diet and kept in a tiny crate where it couldn’t even turn around. Wouldn’t you be willing to spend afew extra dollars to know your dinner lived a better, less stressful life? Veal calves are the male offspring of the dairy dams and are therefore an unavoidable ethical dilemma. Although it cannot be stopped there is much room for improvement. In most states restricting movement to simply standing up and sitting down, purposely feeding inadequate milk replacers, and providing unsanitary living conditions are only some of the terrible things veal calves suffer through (MSPCA, 2014). These everyday stresses cause a weakened immune system leading to diseases and many stereotypic behaviors (Leadley, Sojda, 2004). These negative effects can decrease the quality if the meat produced by the farms these animals call home (Centner, 2009). The welfare and quality of life of veal calves on high production farms will be improved by improving diet and housing.

Continue Reading

Welfare and Production Benefits of Laying Hens in Enriched vs. Conventional Caging Systems

By: Lindsey Youngman, Kristina O’Keefe, and Casey Sullivan

 

Laying hens housed in a typical battery cagehttp://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Animal_Abuse_Battery_Cage_01.jpg/220px-Animal_Abuse_Battery_Cage_01.jpg

Laying hens housed in a typical battery cage       Retrieved from: http://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Animal_Abuse_Battery_Cage_01.jpg/220px-Animal_Abuse_Battery_Cage_01.jpg

 

 

Introduction

The stench of decaying flesh filled the air as an undercover investigator by the name of “Scott” walked between the rows of battery cages at Sparboe Farms in Iowa. Rats darted across the egg plates and flies swarmed the chickens, feasting on a meal of a long deceased hen. He watched as other workers grabbed hens by the neck, slamming them in and out of cages too small for movement. The cages extended the length of two football fields, each festering with vermin and decay (Ross, 2011). Above all the rot, however, were innocent lives being held captive in the most inhumane conditions. Continue Reading

Animal Feed as a Solution to Food Waste

Samantha Alpert – Animal Science
Chris Astrauckas – Animal Science
Joe Bynoe – BCT

Dairy cattle  Molinos Champion S.A. (2009.).  Retrieved from http://www.feedmanufacturers.net/animal/livestock/cattle-2/
Dairy cattle
Molinos Champion S.A. (2009.). Retrieved from http://www.feedmanufacturers.net/animal/livestock/cattle-2/’

As a child, there were probably many times when you couldn’t finish the food on your plate. Instead, you slipped it under the table to your pet dog or cat, hoping your parents wouldn’t notice. However, they usually did and you usually received a scolding. Now, imagine if rather than something for which people were scolded, this was put into large scale action by businesses across the country.

Continue Reading

Mink Fur Farming: Adapting an industry on the rise

Figure 1. American Mink as seen in typical single housing cage system (McArthur, 2013).

Figure 1. American Mink as seen in typical single housing cage system (McArthur, 2013).

By Jacqueline Canny (NRC), Elizabeth Galeuci (AniSci)  & Jessica LaBelle (AnSci)

Industry on the Rise

Since the beginning of human existence in the cold regions of the world, fur has been an appealing and practical societal commodity. Fur gathering for many early trappers, especially in the United States, began as a successful and relatively simple business venture aimed at supplying a continuous demand for fur products. Fur has since transcended from being a good necessary for the survival of human societies, to a luxury product in a small niche market where industrial profits are subject to change due to an inconsistent demand. (Fur Commission USA, 2011).  Continue Reading