On August 8th 1970, the southern resident orca whale population was ambushed off the coast of Penn Cove, Washington in one of the most infamous whale captures in history (WDC, 2017). This capture involved 80 whales, in which 7 were collected and 5 were killed (WDC, 2017). The only current living orca from this incident is Lolita (WDC, 2017). She is now the oldest living killer whale in captivity and lives in what is arguably too small of a tank (Save Lolita, n.d; Herrera, 2017). It’s believed that Lolita’s tank doesn’t meet the minimum 48 feet horizontal dimension requirement set by the United States Department of Agriculture (USDA) (Herrera, 2017). Lolita has a 60 foot tank obstructed by a ‘work island’ that separates her pool into two 35 feet sections (Herrera, 2017). Another issue Lolita faces in captivity is solitude (which is abnormal for social animals such as orcas) (Save Lolita, n.d). Due to animal rights advocacy groups making these issues well known to the public, Lolita has become both a symbolic example for why orcas can’t feasibly be kept in captivity and a famous icon for the southern resident orca population. This killer whale population is currently estimated at 80 whales consisting of 3 pods named the J,K and L pods (NOAA Fisheries, 2015). In the fall, spring and summer their territory ranges from waterways near the U.S.-Canadian border to inland waterways in Washington state ( NOAA Fisheries, 2015).
The southern resident orca whale population is also vital for Washington state’s economy. These whales benefit the state’s economy by providing tourism revenue through whale watching (Grace, 2015). The number of people going on whale watches in Washington has even increased over time; from 1998 to 2008, Washington state saw an increase of 108,000 whale watchers and a 3% average annual growth rate (O’Connor, 2009). Due to this increased whale watching tourism, wildlife watching activities (such as whale watching) created over 21,000 jobs in Washington State, yielded $426.9 million in job income, and generated $56.9 million in state tax revenue all in 2001 (Grace, 2015, para. 4). People are also estimated to spend nearly $1 billion annually in Washington viewing wildlife (O’Malley, 2005, para. 1). It’s also estimated that the southern resident orca population itself adds minimally 65-70 million dollars to Washington state’s economy (Grace, 2015, para. 1).
Sadly though, despite all the intrinsic and economic benefits these orcas bring to Washington state, they are facing the threat of extinction. In fact, the southern resident orca population was even added to the endangered species list in 2005 (NOAA fisheries, 2015).They were added to this protection list because the population has fallen from an estimated 200 whales in the late 1800s to a current estimate of 80 whales (NOAA Fisheries, 2015). This population decline even lead to the production of a recovery plan by the National Marine Fisheries Services (National Marine Fisheries Service, 2008). This plan addresses specific potential threats to the southern resident orca population such as prey availability, pollution, vessel effects, oil spills, exetera and outlines goals to minimize these threats and their harm to orcas (National Marine Fisheries Service, 2008). One of the believed reasons behind the orcas small population size is a limited abundance of salmon from the Snake and Columbia rivers (Baker & Peterson, 2017). The southern resident orcas rely on Columbia and Snake river salmon as a food source during the summer when they live in waters off the San Juan Islands that lie northwest of Seattle (Baker & Peterson, 2017). Salmon are an essential food source for these whales because resident killer whales only prey on fish, not other marine mammals (such as seals or sea lions) (Ford et al., 1998, 2009). The Columbia River itself is also especially crucial for southern resident orcas as they display unique feeding behavior there not seen at any other territorial location; they stock up on salmon by sitting at the mouth of the river for days and foraging (Baker & Peterson, 2017). It’s also believed the declining salmon population is a key reason behind the southern resident orcas low population because orcas are predators at the top of their ecosystem’s food chains and don’t serve as prey for other animals (Ford, 2009). Therefore, predation of orcas cannot be considered a valid source for their population decline. As a result, the decreasing salmon population in the Columbia and Snake Rivers has added pressure to the orca population over the past three decades (Baker & Peterson, 2017). The Center for Whale Research and the Center for Conservation Biology (University of Washington) found that low salmon populations also lead to enough nutritional stress to cause two-thirds of southern resident orca pregnancies to fail between 2007 and 2014 (Baker & Peterson, 2017).The majority of the salmon this whale population consumes also originates from the Snake river, a tributary of the Columbia River (Barker & Peterson, 2017). In short, the southern resident orca population is critically endangered and low salmon populations are putting even more stress on the whales (Barker & Peterson, 2017; Ford 2009). If the northwest salmon population is not restored, it could result in the disappearance of resident orcas in the northwest forever.
Since 1991, twelve specific populations of Columbia River Basin salmon and steelhead have been protected under the Endangered Species Act (Harrison, 2016). For Snake River Salmon the National Marine Fisheries Service noted that the estimated annual returns of spring/summer Chinook declined from 125,000 fish between 1950 and 1960 to just 12,000 fish in 1979 (Harrison, 2016). Proposed recovery plans have also started legal battles over what actions are necessary to avoid further jeopardizing the species (Harrison, 2016). This debate is complicated by hydropower dams directly affecting salmon and steelheads (Harrison, 2016). These hydropower dams on the Columbia and Snake rivers are inhibiting growth of the river’s salmon population by creating habitat fragmentation, causing direct mortality and decreasing their food supply (Harrison, 2008).
At 1,954 kilometers long, the Columbia river is the 15th longest river in North America; its tributaries and it form the dominant water system in the Pacific Northwest as it drains into seven different western states (Bonneville Power administration , 2001). The history of the dams on the Columbia and Snake rivers date back to Theodore Roosevelt’s presidency, as the construction of the first dam on the Columbia river (the Rock Island dam) began shortly after his election with the sole intention of producing electricity (Harrison, 2008) . By 1975 the Columbia river had four more large dams constructed on it and has had smaller dams constructed on it since (Harrison, 2008).
These dams inhibit the river’s salmon population because they fragment rivers and therefore impede salmon migration. This negatively impacts the reproduction of the Columbia and Snake river salmon because they then cannot spawn effectively upstream. Salmon need to navigate between spawning sites, rearing habitat (juvenile living space) and the Pacific Ocean in order to reproduce. Salmon hatch in rivers and then travel to the ocean for their adult lives (National Park Service’s, 2017). Then when they are ready to spawn again, instincts guide them back to their birthplace to spawn (National Park Service’s, 2017). There are also case studies to show that dams, like the ones present in the Snake and Columbia river, prevent the salmon from properly spawning upstream. For example, the presence of the Hemlock Dam on Trout Creek, Washington, USA was linked to the impeded migration of U.S. threatened Lower Columbia River steelhead (a type of salmon) and other migratory fish by blocking their migration path (Claeson & Coffin, 2016, p. 1144). It is also known that the dams in the Columbia river basin now block more than 55 percent of the spawning and rearing habitat once available to salmon and steelhead (Harrison, 2008).
Dams not only block the upstream passage of adult fish but block the downstream passage of juvenile fish as well. Hydroelectric dams (such as the ones on the Columbia and Snake rivers) compound this problem because they force migrating fish to travel through turbines without a bypass systems (Harrison, 2008). This is a problem for migrating salmon because the spinning blades and/or concrete walls in these turbines could kill or injure juvenile fish drawn in by the current (Harrison, 2008). Biologists estimate that fish drawn through a turbine passage has a 10 to 15 percent chance of dying (Harrison, 2008). This is problematic due to the Snake and Columbia river having multiple hydroelectric dams that increase each fish’s chance of dying by forcing them to travel through turbines to migrate (Harrison, 2008).
The dam’s on the Columbia and Snake rivers are also negatively impacting the salmon populations chance of survival by limiting their sources of food. The hydroelectric dams are doing this by limiting the growth of benthic insects (mayflies,stoneflies, caddisfly nymphs) populations within the rivers. Dams are known to limit benthic insect population growth by increasing water temperatures (Claeson & Coffin, 2016). Dams increase water temperatures by creating reservoirs that isolate water and create a slow flow over the dam that increases the reservoir’s water and discharge temperature (Claeson & Coffin, 2016). In warmer waters, desirable salmon food sources such as mayfly, stonefly and caddisfly nymphs die off and are replaced by other insects (midges and mosquito larvae) that are much less desirable as food for salmon (Effects of Elevated Water Temperatures on Salmonids, 2000). Cold water fish such as salmon relay on benthic insect populations as a source of food and decreasing benthic insect populations makes an environment unsuitable for salmon to live in (Claeson & Coffin, 2016, Harrison, 2008).
The best plan to solve this problem and save both the salmon and orca whale population would be to remove the dams from the Columbia and Snake rivers. Removing the dams would help restore the salmon population that the southern resident orcas so heavily rely on. There have been previous dam removals in the Columbia and Snake river area that have resulted in a successful increase in salmon population. In 2012, removing the Condit Dam from the White Salmon River (a tributary to the Columbia River) restored upstream migration access for the first time in 100 years (Allen et al., 2016, p.192). The number of redd counts (the number of salmon spawning nests) shows the increase in the salmon population (Allen et al., 2016, p.197). In the pre-dam model for the Tule fall Chinook Salmon it’s redd count increased by 60% since dam removal and the Upriver bright fall Chinook Salmon redd count increased from no abundance to around 4,251 redds after dam removal in 2013 (Allen et al., 2016, Table 2). This dramatic increase in spawning means a greater number of salmon are being produced. Other large dam removals include Washington State’s Glines Canyon Dam and the Elwha Dam hydroelectric dam. These dams were removed in 2011 (Nijhuis, 2014). Now salmon can be seen migrating past the former dam sites and as salmon populations recover, research expect the whole food web to benefit (Nijhuis, 2014). These cases set forth by the Condit, Glines Canyon and Elwha Dam removal is further evidence that dam removal in the region can be beneficial to the salmon population.
While these cases have made it clear that dam removal is the best option to restore the salmon population, there are other options available. Alternative methods such as a permanent adult fish ladder can be seen on the Lower Granite Dam (Conca, 2016). However, fish ladders can be problematic because they elevate water temperatures to form a “thermal barrier” that stops adults from migrating upwards into warm waters (Conca, 2016). One method the US Army Corps of Engineers attempted to face this problem was releasing Dworshak reservoir water in to cool the Snake River (Lower Granite Adult Fish Ladder Temperature Improvement System, 2016). Another alternative method is “daylighting” juvenile fish passage (Conca, 2016). This is when juvenile fish passage is allowed through a large elevated bypass flume leading to the Juvenile Fish Facility just downstream of the dam (Conca 2016). Save Our Wild Salmon (a nationwide coalition working to restore salmon and steelheads to the rivers) also argues that the federal government is relying on these unreliable alternative methods such as barging and trucking salmon around the dams and limiting the amount of water in the river (Bogaard, 2017). Implementing these alternative methods have already cost billions of dollars to the US taxpayers and over the past twenty years, researchers still also haven’t found conclusive evidence that federal salmon recovery actions succeeded in helping restore these fish (Bogaard, 2017). Federal agencies have spent more than $8 billion in attempts to restore Columbia and Snake River salmon (Bogaard, 2017). Each year more than $550 million in funding goes to NOAA Fisheries, the Army Corps of Engineers and other federal agencies for this effort (Bogaard, 2017). Removing these dams could be cheaper than these other restoration efforts and revive both the salmon and orca populations. Advocates for dam removal also argue that the removal of these dams is a viable option because they produce most of their power in the spring when it’s not crucial for Northwest power supplies, and it would be relatively simple and inexpensive when comparing the cost to other alternative methods (Baker & Peterson, 2017).
The main reason some are still resistant to removing these dams is because they provide a significant source of hydropower. There are four main hydroelectric power providing dams on the Snake river; these are the ICE Harbor, Lower Monumental, Little Goose and Lower Granite Dams (Conca, 2016). According to Conca (2016) Ice Harbor Dam produces 1.7 billion kWhs/yr, Lower Monumental dam produces 2.3 billion kWhs/yr, Little Goose dam produces 2.2 billion kWhs/yr and Lower Granite dam produces 2.3 billion kWhs/yr. (Conca, 2016). Washington’s hydroelectric power provides more than two-thirds of Washington’s net electricity generation and almost nine-tenths of the state’s renewable power generation (U.S Energy Information Administration, 2017). As for the Columbia river, The Grand Coulee Dam is the largest hydroelectric power producer in the United States, with a total generating capacity of 6,809,000 kilowatts (U.S Energy Information Administration, 2017). The communities that depend on the Snake and Columbia river’s hydroelectric dam power are then faced to question if there are potential ways to provide Washington state a renewable energy source that doesn’t hurt the salmon population . To end this debate an alternative energy source (specifically wind energy) needs to replace the hydropower provided by the dams on the Snake and Columbia river so that the dams may be removed.
This replacement energy source absolutely needs to be renewable because Washington passed renewable energy standard (RES) legislation in 2006 that requires certain utilities to have fifteen percent of their electricity sales from renewable resources by 2020 and to invest in energy efficiency (American Wind Energy Association, 2014). One viable, renewable energy source that may be used to replace hydroelectric power provided by these dams would be wind energy. In fact, in 2015 Washington ranked ninth in the nation in wind energy electricity generation (U.S Energy Information Administration, 2017). There are still some skeptics regarding the reliability of wind turbines and their ability to produce enough power to feasibly replace other energy sources. For example, some claim that wind turbines are unpredictable, not dependable enough for consistent power generation and only produce 8% of their total system capacity (Edmunds, 2014). However, this is mostly incorrect and invalid in this case. Wind energy has already proven itself feasibly reliable in Washington, it’s the state’s second largest renewable energy generation contributor with over 3,000 megawatts of installed capacity (U.S Energy Information Administration, 2017). This can be compared to the 6,910 megawatts of hydroelectricity generated Washington net electricity (U.S. Energy Information Administration – EIA – Independent Statistics and Analysis, 2017). Wind energy is also relied upon as a common renewable resource of choice to meet renewable energy legislation requirements (American Wind Energy Association, 2014).
New wind turbine farms to replace the hydroelectric dams can be installed by PSE (Pudget Sound Energy), the largest Northwest utility producer of renewable energy (Hopkins Ridge Wind Facility). They own and operate the large wind farms including the Hopkins Ridge Wind Facility located in Columbia County (Hopkins Ridge Wind Facility). The Hopkins Ridge Wind Facility started in 2005 and consists of 87 turbines producing an average annual output of about 465,000 megawatt hours, sufficient to power 41,000 households (Hopkins Ridge Wind Facility). If more winds farms like Hopkins Ridge Wind Facility were developed to help the state of Washington develop more wind energy, the people of Washington wouldn’t need the hydroelectric power provided by the dams and they could be removed to help prompt orca and salmon population recovery.
The best possible solution for this issue is to harness and develop more wind energy in the state of Washington. This energy replacement will allow for the dams to be removed without depriving the people of Washington of electricity. Being able to remove these dams is critical for the survival of the salmon population within the Columbia and Snake rivers. Sustaining the salmon population is critical for the survival of the southern resident orca population (a beloved tourist attraction in the state of Washington). Saving the salmon population will also help the National Marine fisheries service in achieving the recovery plan outlined for southern resident orca whales in 2008 (National Marine Fisheries Service. 2008). In short, finding an alternative renewable energy source to replace the dams on the Columbia and Snake rivers is imperative for the survival of the salmon and orca whale populations affected by these dams. Lolita the orca was taken from this population and is now suffering as a result (Save Lolita, n.d.; WDC, 2017). She serves as an example of how hard captivity is for orcas and why preserving the southern resident population in the wild is their only true chance for survival.
AUTHORS
Marilyn Donovan – Animal Science: Pre-vet
Lauren Baldwin – Environmental Science
Connor Taylor – Environmental Science
REFERENCES
Allen, M. B., Engle, R. O., Zendt, J. S., Shrier, F. C., Wilson, J. T., & Connolly, P. J. (2016). Salmon and steelhead in the white salmon river after the removal of Condit Dam–Planning efforts and recolonization results. Fisheries, 41(4), 190-203. doi:10.1080/03632415.2016.1150839
American Wind Energy Association. (2014, August 12). State wind energy statistics: Washington. Retrieved from http://awea.files.cms-plus.com/FileDownloads
/pdfs/washington.pdf
Barker, R., & Peterson, B. (2017, July 10). Fate of the Pacific Northwest orcas is tied to having enough Columbia River salmon. Retrieved November 05, 2017, from
http://www.tri-cityherald.com/news/local/article160618424.html
Bogaard, J. (2017). Why Remove The 4 Lower Snake River Dams? Retrieved November 30, 2017, from http://www.wildsalmon.org/facts-and-information/why-
remove-the-4-lower -snake-river-dams.html
Bonneville Power administration , U.S. bureau of reclamation, U.S. army corps of engineers. (2001, April). THE COLUMBIA RIVER SYSTEM INSIDE STORY. Retrieved November 13, 2017, from https://www.bpa.gov/power/pg/columbia_river_inside_story.pdf
Claeson, S. M., & Coffin, B. (2016). Physical and biological responses to an alternative removal strategy of a moderate?sized dam in Washington, USA. River Research and Applications, 32(6), 1143-1152. doi:10.1002/rra.2935
Conca, J. (2016, December 01). Will Removing Large Dams On The Snake River Help Salmon? Retrieved November 05, 2017, from https://www.forbes.com/sites/jamesconca/2016/11/29/ will-removing-large-dams-on-the-snake-river-help-salmon/#6a09e204155b
Edmunds, D. R. (2014, October 27). Study: Wind Turbines are ‘Expensive, Unreliable and Inefficient’. Retrieved November 30, 2017, from http://www.breitbart.com/london/2014 /10/27/government-is-whistling-in-the-wind-on-practical-case-for-wind-power/
Effects of Elevated Water Temperatures on Salmonids. (2000, July). Retrieved December 3, 2017, from https://fortress.wa.gov/ecy/publications/publications/0010046.pdf
Ford, J. K., Ellis, G. M., Barrett-Lennard, L. G., Morton, A. B., Palm, R. S., & Iii, K. C. (1998). Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Canadian Journal of Zoology, 76(8), 1456-1471. doi:10.1139/cjz-76-8-1456
Ford, J. K., Ellis, G. M., Olesiuk, P. F., & Balcomb, K. C. (2009). Linking killer whale survival and prey abundance: food limitation in the oceans apex predator? Biology Letters, 6(1), 139-142. doi:10.1098/rsbl.2009.0468
Grace, S. (2015, September 29). Economic Value. Retrieved November 26, 2017, from https://srkwcsi.org/the-economic-value-of-southern-resident-killer- whales/
Harrison, J. (2008, October 31). DAMS: IMPACTS ON SALMON AND STEELHEAD. Retrieved November 14, 2017, from https://www.nwcouncil.org/history/DamsImpacts
Harrison, J. (2016, May 4). ENDANGERED SPECIES ACT AND COLUMBIA RIVER SALMON AND STEELHEAD. Retrieved November 14, 2017, Retrieved from https://www.nwcouncil.org/history/EndangeredSpeciesAct
Herrera, C. (2017, June 7). Lolita’s tank at the Seaquarium may be too small after all, a new USDA audit finds. Retrieved December 01, 2017, from http://www.miamiherald.com/news/business/article154928954.html
Hopkins Ridge Wind Facility. (n.d.). Retrieved November 30, 2017, from https://pse.com/aboutpse/EnergySupply/Pages/Wind-Power.aspx
Lower Granite Adult Fish Ladder Temperature Improvement System. (2016, May 25). Retrieved December 3, 2017, from http://.nww.usace.army.mil/Portals/28/docs/programsandprojectsandprojects/Granite%20temp%20Improvement/FS_160525LowerG_LadderTempImprovementFinal.pdf
National Marine Fisheries Service. (2008). Recovery Plan for Southern Resident Killer Whales
(Orcinus orca). National Marine Fisheries Service, Northwest Region, Seattle,Washington.
Nijhuis, M. (2014, August 27). World’s Largest Dam Removal Unleashes U.S. River After
Century of Electric Production. Retrieved December 3, 2017,from https://news.
nationalgeographic.com/news/2014/08/140826-elwha-river-dam-removal-salmon-science-olympic/
NOAA Fisheries. (2015, January 08). Killer whale (Orcinus orca). Retrieved December 02,
2017, from http://www.nmfs.noaa.gov/pr/species/mammals/whales/killer-whale.html
O’Connor, S., Campbell, R., Cortez, H., & Knowles, T. (2009). Whale Watching Worldwide: tourism numbers, expenditures and expanding economic benefits, a special report from the International Fund for Animal Welfare, Yarmouth MA, USA, prepared by Economists at Large. Retrieved from http://www.ifaw.org/sites/default/files/whaleWatchingworldwide.pdf
O’Malley, M. F., (2005). Wildlife Viewing Recreation: Economic Stimulant and Habitat Protection Tool. Retrieved from http://depts.washington.edu/uwconf/2005psgb /2005proceedings/papers/E10_OMALL.pdf
Save Lolita, Raising Awareness for Lolita the Orca. (n.d.). Retrieved December 1, 2017, from https://www.savelolita.org/
The Salmon Life Cycle. (n.d.). Retrieved December 03, 2017, from https://www.nps.gov/olym/learn/nature/the-salmon-life-cycle.htm
U.S Energy Information Administration. (2017, November 16). Washington – State Energy
Profile analysis – U.S. Energy Information Administration (EIA). Retrieved from https://www.eia.gov/state/analysis.php?sid=WA
U.S. Energy Information Administration – EIA – Independent Statistics and Analysis. (2017, July). Retrieved December 03, 2017,
from https://www.eia.gov/state/?sid=WA#tabs-4
WDC. (2017). The Fate of Captive Orcas. Retrieved December 01, 2017, from http://us.whales.org/wdc-in-action/fate-of-captive-orcas
Recent Comments