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Learning serial constraint-based grammars1 
Robert Staubs and Joe Pater, University of Massachusetts Amherst 

1  Introduction 

In this paper we describe a method for learning grammars in the general framework of 
Harmonic Serialism (see McCarthy this volume for references and an introduction). We have 
two main goals. The first is to address the hidden structure problem that serial derivations 
introduce. The second is to address the problem of learning variation, which has yet to be 
confronted in this framework (see also Staubs et al. 2010 and Tessier and Jesney 2014 on the 
learning of Harmonic Serialism). In the remainder of this section, we illustrate the grammar 
model, and our approach to the learning of hidden structure, with a simple example of stress-
epenthesis interaction. Our main contribution comes in the next section, where we introduce a 
method for calculating probabilities over the unbounded non-monotonic derivations that are 
characteristic of a stochastic serial theory. The third and last section consists of an application 
to data from French ‘schwa’ deletion that display variation. 

In Harmonic Serialism, the path from the grammar’s initial input to its final output is a 
series of derivational steps. In each step, a set of operations first applies to create a candidate 
set of outputs, from which one is chosen by a set of constraints. This output becomes the input 
for the next step of the derivation. The derivation terminates, or converges, when the chosen 
output is identical to the input of that step. From the perspective of learning, these derivations 
are an instance of what Tesar and Smolensky (2000) call ‘hidden structure’. Hidden structure 
refers to properties of the learning data that are not supplied to the learner, but must instead be 
inferred as part of the learning process. Our approach to learning this case of hidden structure 
is a generalization of Eisenstat’s (2009) method for learning phonological Underlying 
Representations (URs). We will explain and illustrate Eisenstat’s proposal as we discuss our 
toy stress-epenthesis case, since it also includes a UR learning problem. 

The words in our mini-language are [tikát] and [píkat], stressed on the second and first 
syllable respectively. These surface forms can be produced by the derivations shown in (1). 
This is the standard rule-based analysis of opaque stress-epenthesis interaction (Brame 1974). 
As Elfner (this volume) shows, Harmonic Serialism can also produce derivations that follow 
these steps. 
(1) /tkat/ /pikat/  UR 

tkát píkat  Stress 
tikát    –  Epenthesis 
[tikát] [píkat]  SR 

The data given to the learner are the overt forms [tikát] and [píkat]. We do not include any 
hidden structure in the Surface Representations (SRs), such as metrical structure, so the overt 
forms and SRs are equivalent.  

One type of hidden structure that the learner must discover is the UR for each SR. Here we 
restrict the search space to /tkat/ and /tikat/, and /pkat/ and /pikat/. In Eisenstat’s (2009) model, 
the probabilities of the overt forms are the summed probabilities of the UR-SR mappings 
corresponding to each. Thus for our example the probabilities of [tikát] and [píkat] are 
calculated as in (2). 
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(2) Probabilities of overt forms as summed probabilities of UR-SR mappings 
p ([tikát]) = p (/tkat/ →"[tikát]) + p (/tikat/ →"[tikát])  
p ([píkat]) = p (/pkat/ →"[píkat]) + p (/pikat/ →"[píkat])  

The learning objective is to maximize the probability or likelihood that the grammar assigns to 
the observed overt forms. We will discuss how this is done shortly. 

In the serial setting, the steps between the underlying form and the surface form are further 
instances of hidden structure. Here we assume that each step of the derivation adds the 
epenthetic vowel [i], or a stress to a syllable of a word that lacks it. When the derivation starts 
with a UR that lacks [i] and stress, like /tkat/, there are thus two paths that lead to an SR like 
[tikát] with stress on the final syllable, with either epenthesis or stress placement applying first. 
The probability of an overt form is now the summed probability of the derivations that lead to 
it, as shown in (3). 
(3) Probabilities of overt forms as summed probabilities of derivations 

p ([tikát]) = p (/tkat/ →"tikat"→ [tikát]) + p (/tkat/ →"tkát"→"[tikát]) +  p (/tikat/ →"[tikát]) 
p ([píkat]) = p (/pkat/ →"pikat""→ [píkat]) + p (/pikat/ →"[píkat]) 

The probability of each of the derivations is the product of the probabilities of each of its steps. 
The probability of each of the steps is the probability that the grammar grants to that outcome 
relative to all other possible outcomes of that step, that is, relative to all of the other members 
of the current candidate set.  

Like Eisenstat (2009) we use Goldwater and Johnson’s (2003) Maximum Entropy Grammar 
(MaxEnt) to define the probability distribution over a candidate set. Our learning proposal is in 
principle compatible with other stochastic variants of Optimality Theory (OT) and Harmonic 
Grammar (HG) (see Coetzee and Pater 2011 for an overview and Kimper 2011a on a serial 
implementation), but MaxEnt has a conveniently direct definition of probability. MaxEnt is a 
probabilistic version of HG in that it computes the Harmony of each candidate as the weighted 
sum of constraint violations (see Pater this volume for an introduction to and overview of HG, 
and Boersma and Pater this volume on Noisy HG, another stochastic implementation). In 
MaxEnt, the probability of a candidate is proportional to the exponential of its Harmony. 
MaxEnt in a serial framework is thus a probabilistic version of serial HG; for other work in 
serial HG see Elfner (this volume), Kimper (2011b), Mullin (2011) and Pater (2012, this 
volume).  

For this example, which includes UR learning, we also follow Eisenstat (2009) and Pater, et 
al. (2012) in using constraints on URs, first introduced to OT by Zuraw (2000) and Boersma 
(2001), and first applied to the learning of underlying forms by Apoussidou (2007). These 
constraints demand particular mappings from meaning (or morpho-syntactic features) to 
phonological URs (our formalism differs somewhat from earlier proposals; see also Pater et al. 
2012). Here we have the set of four UR constraints in (4a), which assign violations as in (4b). 
We give [píkat] the meaning ‘paper’, and [tikát] the meaning ‘table’.  
(4) UR constraints 

a. ‘paper’ →"/pkat/ b. ‘paper’ →"/pikat/"c."‘table’"→"/tkat/"d."‘table’"→"/tikat/"
b. Assign"a"penalty"of"–1"if"meaning"‘X’"does"not"map"to"UR"/Y/ 

Our derivations start with an input meaning, and a candidate set of the two URs that satisfy 
each of the two constraints for each meaning. At this initial step of the derivation, the only 
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constraints that apply are the UR constraints, and these constraints do not apply to any of the 
further steps of the derivation. The assumption that the phonological constraints do not apply at 
the step of UR insertion is not crucial; we make it only to produce derivations that look more 
like standard rule-based ones (see Wolf 2008 for relevant discussion).   

The tableau in (5) illustrates the first step of a derivation from ‘table’. The weights of the 
constraints are shown underneath the constraint names; these are the weights that our learner 
found in a simulation with overt [tikát] and [píkat] (paired with their meanings). The Harmony 
scores for each of the candidate URs is shown to the right of the row. Beside each of the 
candidate URs is its probability under the MaxEnt definition given above, rounded to three 
decimal points (‘1’ = 1.000). With these weights, /tikat/ is vanishingly improbable as the first 
step. 
(5) First step of a derivation from ‘table’ 

 ‘table’ ‘table’"→"/tkat/"7.94  
‘table’"→"/tikat/"

0  

a. 1   /tkat/  –1 0 

b. 0 /tikat/ –1  –7.94 

We will follow the derivational path for the highly likely /tkat/. 
The candidate sets in subsequent steps consist of the unchanged input, as well as all results 

of applying one of two operations. Stress placement adds stress to any syllable, if a word does 
not already have a stress. Epenthesis adds the vowel [i] between any two adjacent consonants. 
The candidate sets are evaluated by the constraints STRESS-L and STRESS-R, which demand 
stress on the leftmost and rightmost syllable respectively, and assign a violation if that syllable 
is not stressed, as well as by *CLUSTER, which penalizes adjacent consonants.  

The tableau for the second step of the derivation shows the activity of these operations and 
constraints. The unchanged (6a.) violates all three constraints, and thus has very low 
probability. Adding a vowel, as in (6b.), resolves the *CLUSTER violation, but still incurs 
violations of the stress constraints. Since [tkát] is monosyllabic, it satisfies both stress 
constraints, at the cost of retaining the *CLUSTER violation. In (6) the sum of the weights of the 
stress constraints is greater than the weight of the *CLUSTER constraint, so [tkát] has higher 
probability than [tikat].2 This shows how the constraints can affect the order of operations: with 
these weights, stress is extremely likely to precede epenthesis.   
(6) Second step of a derivation from ‘table’ 

 /tkat/ STRESSCR"12.01  
STRESSCL"

18.57"
*CLUSTER"

24.42"  

a. 0   tkat –1 –1 –1 –55.01 

b. 0.002 tikat –1 –1  –30.58 

c. 0.998 tkát   –1 –24.43 

We again follow the path resulting from the most probable output. In the next step, the only 
available operation is epenthesis, since we are assuming stress placement only applies to 
unstressed words. Adding the vowel as in (7b.) adds a violation of STRESS-L relative to the 
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unchanged form in (7a.), because the leftmost syllable is now unstressed. The unchanged (7a.), 
on the other hand, retains the violation of *CLUSTER. With *CLUSTER having a higher weight 
than STRESS-L, [tikát] gets higher probability than [tkát].   
(7) Third step of a derivation from ‘table’ 

 tkát STRESSCR"12.01  
STRESSCL"

18.57"
*CLUSTER"

24.42"  

a. 0.001   tkát   –1 –24.42 

b. 0.999 tikát  –1  –18.57 

With [tikát] as an input, there are no further operations that can apply, so [tikát] will be the sole 
output candidate, and the derivation will thus converge.  

Given ‘table’ as the initial input, the probability of this derivation is nearly 1, so the 
observed [tikát] with second syllable stress has probability approaching its maximum. These 
weights also give observed [píkat] with initial stress probability approaching 1. The difference 
between them comes from the difference in the weights of their respective UR constraints. As 
shown in (8), ‘paper’ is extremely likely to map in the first step to bisyllabic /pikat/.""
(8) First step of a derivation from ‘paper’ 

 ‘paper’ ‘paper’"→"/pkat/"0 
‘paper’"→"/pikat/"

7.94  

a. 0 /pkat/  –1 –7.94 

b. 1 /pikat/ –1  0 

The next step in the derivation, from /pikat/, is shown in (9).  
(9) Second step of a derivation from ‘paper’ 

 /pikat/   STRESSCR"12.01  
STRESSCL"

18.57"
*CLUSTER"

24.42"  

a. 0.001   pikát –1   –12.01 

b. 0.999 píkat  –1  –18.57 

c. 0  pikat –1 –1  –30.58 

The most probable outcome is the observed [píkat] because STRESS-L has a greater weight than 
STRESS-R. The next step of the derivation converges on this form, since neither operation can 
apply. 

 We have now explained and illustrated how the grammar produces probabilities over the 
overt forms as the sum of probabilities of the derivations leading to them, with the probabilities 
of the derivations themselves arising as joint probabilities of their steps. We are therefore now 
ready to explain how the learner finds the constraint weights that yield the probabilities over 
the candidate sets. As we mentioned above, the learning objective is to maximize the likelihood 
of the observed forms. In a weighted constraint approach, the variables that the learner 
manipulates are the constraint weights. Set up in this way, this optimization problem can be 
solved by a range of algorithms. The particular optimization algorithm we used was the L-
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BFGS-B method (Byrd et al. 1995) as implemented in R (R Development Core Team 2010). L-
BFGS-B is a quasi-Newton method implementing box constraints on solutions. We use these 
box constraints to set a zero minimum for constraint weights. The only remaining issue is that 
the solution space is unbounded above, because with finite weights the probability that the 
grammar assigns to the observed forms can only approach 1. To resolve this, we take the 
standard approach of adding to the objective function a regularization term that penalizes the 
constraint weights in proportion to their distance from zero. The weights shown above were 
found with a Gaussian (or L2) prior with variance 100,000, which is sufficiently weak that it 
does little more than stop the weights from going to infinity.  

In the general case, the calculation of the probabilities over overt forms that the grammar 
generates is more complex than in our toy example. The simplicity of the calculation above 
was due to the monotonic nature of the derivations: structure was only added, and never taken 
away or changed. The complexity of the general case can be appreciated by considering the 
result of adding an operation that deletes the vowel [i]. The set of derivations leading to [tikát] 
is now infinite – a few paths are illustrated in (10). 
(10) A sample of an infinite set of derivations with the same result 

a. /tkat/ →"tikat"→ tikát"→ [tikát]  
b. /tkat/ →"tikat"→ tikát"→"tkát"→"tikát → [tikát]  
c. /tkat/ →"tikat"→ tikát"→"tkát"→"tikát → tkát"→ tikát → [tikát] 

The path in (10a.) is the one that our grammar produced with probability approaching 1. The 
path in (10b.) results from deleting [i] after placing stress, and reinserting it, and (10c.) iterates 
this loop. Deletion is preferred by STRESS-L, and insertion by *CLUSTER, so even if we remove 
harmonically bounded candidates (see section 2), there is always some probability of choosing 
the result of these operations rather than the unchanged form, thus postponing convergence. 
The length of the derivations is therefore unbounded, and the set of derivations producing the 
same result is infinite. As Kimper (2011a: 458) points out, in a stochastic serial theory the 
probability of non-convergence in such cases becomes arbitrarily close to zero as derivation 
length increases. The issue for our learning model, which we address in the next section, is how 
to calculate probabilities over infinite sets of paths like those in (10) that lead from a given 
initial input to the same final output.  

2  Computing probabilities over unbounded derivations 

2.1.  Unbounded derivations 
To discuss our approach to unbounded derivations, we will use a schematic case involving 
obstruent voicing. The input /bada/ has two voiced obstruents. Figure 1 depicts the possible 
derivations starting from this input as a directed graph. Here the operations assumed in GEN are 
simply VOICE and DEVOICE — that is, the voicing of an obstruent can be changed in either 
direction. The one exception is that [pada] does not map to [bada], because [pada] harmonically 
bounds [bada] with our constraint set – we return to this point in section 2.2. 
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Figure 1. Graph of space of derivations for voicing example 
 

From the input /bada/, an output [pata] is reachable in a number of ways, as shown in the 
sample of derivational paths in (11). 
(11) Derivational paths from /bada/ to [pata] 

/bada/ → pada → pata → [pata] 
/bada/ → bata → pata → [pata] 
/bada/ → bata → bada → bata → pata → [pata] 
/bada/ → bata → pata → pada → pata → [pata] 
… 

A given derivation may meander through the graph in any way that obeys the directions of its 
arcs. It is only when the derivation ‘loops’ back on a single particular node that it enters a 
convergence state and the derivation as a whole converges. Thus, in general, the length of 
derivations is unbounded, and the number of them producing a particular output for a given 
input is infinite.  

If the number of derivations producing an input/output mapping is infinite, we must 
incorporate this knowledge into our computation of derivational probabilities. This 
incorporation will in effect sum over the infinite number of possible derivations, yielding a 
probability distribution over convergence states. We return to the details of this computation 
after first discussing the construction of graphs like Figure 1. 
2.2.  From operations to graphs 
In order to explicitly calculate derivational probabilities, we will require an explicit 
representation of the possible steps of a serial derivation in the given domain. In particular, 
given a set of operations GEN and a set of constraints CON we must be able to construct a graph 
like Figure 1 depicting the possible transitions between two steps.  

Such graphs allow the finite representation of an infinite number of derivations. This 
finiteness is crucial for the approach adopted here. Finiteness follows immediately from non-
probabilistic serial constraint-based theories: any particular Harmonic Serialist derivation has 
only a finite potential for improvement under a given ranking of the constraints in CON and 
must always improve harmony, step by step. Taken together, these facts imply that all 
Harmonic Serialist derivations are of bounded length (McCarthy, 2008:274). Thus the possible 
steps included in a derivational graph should include at least all steps (eventually) derivable 
from the input(s) through operations in GEN whose results are not harmonically bounded in 
their candidate sets according to the constraint set CON (where a harmonically bounded 
candidate has a proper superset of violation marks of another member of the same candidate 
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set). This criterion yields the set of derivations fulfilling the criterion of (potential) harmonic 
improvement. 

With a non-probabilistic model, the set of all steps to non-harmonically bounded candidates 
provides the full space of possible derivations. This is true also of any probabilistic framework 
that guarantees that harmonically bounded candidates do not receive any probability mass. Of 
the OT and HG theories of stochastic grammar surveyed in Coetzee and Pater (2011), only 
MaxEnt grants probability to harmonically bounded forms (see Jäger and Rosenbach 2006, 
Jesney 2011 on this aspect of MaxEnt). Since we adopt MaxEnt to define probabilities over 
candidate sets, we must instead impose an additional delimiting heuristic on the space of 
derivations in order to avoid creating infinite graphs. For example, a finite graph is guaranteed 
to exist if only non-harmonically bounded candidates are permitted, as in the graph in Figure 
1.3 

With the criteria described here we can create graphs describing the derivational spaces 
relevant to arbitrary sets GEN and CON. With these mechanisms in place we can proceed to the 
calculation of probabilities over the final outputs of the grammar. 
2.3.  Derivations as Markov chains 
Given a particular weighting of constraints, the space of derivations does not simply look like 
Figure 1. Arcs are not merely present or absent; instead, arcs are annotated by their various 
probabilities of occurrence. Figure 1 can thus be written as in Figure 2.  

Figure 2. Markov chain for voicing example 
 

Here the probabilities are those given by a Maximum Entropy model with the following 
constraints: IDENT(voice) (‘do not change voicing,’ w = 1.5), *VOICE (‘do not have voicing in 
the output,’ w = 3.0), and *VtV (‘do not have voiceless obstruents between vowels in the 
output,’ w = 2.0). 

Written in this form, the derivational space is a particular type of probabilistic graph known 
as a Markov chain. Derivational Markov chains have a particularly useful property: they are 
absorbing. From any given step of a derivational chain, there must be at least one convergence 
state reachable from that step. Once a derivation enters one of these convergence states, the 
derivation has ‘converged’ and may not leave that state. In the terminology of Markov chains, 
these states are absorbing states. States that are not absorbing are called transient. A Markov 
chain of this sort permits us to perform some helpful manipulations for calculating derivational 
probabilities. 

 To proceed we restate the information contained within the graph itself in the form of a 
matrix P. Each row (and column) of the matrix corresponds to a particular state (i.e. 
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derivational step).  The values in the matrix are transitional probabilities. Thus the value in a 
particular row and column is the probability of moving between the state represented by that 
row and the state represented by that column.  

 

Figure 3. Transition matrix for voicing case. Forms in square brackets represent convergent 
states. 

 
We can arrange this matrix so that transient states are listed first by both columns and rows. 

We can then partition the transition matrix of an absorbing Markov chain in the following way. 
The upper-left portion (corresponding to transient-transient mappings) we call Q. The upper-
right portion (transient-absorbing mappings) we call R. As the derivation never leaves 
absorbing states, the lower-left (absorbing-transient) is a zero matrix 0. Finally, as absorbing 
states must self-loop, the lower-right (absorbing-absorbing) is an identity matrix 1 with the 
same number of rows and columns as there are absorbing states. 

 

Figure 4. Partitioning a transition matrix 
 
By raising this matrix to a given power we obtain a matrix that describes the probability of 

going between any two states in a given number of steps. The particular structure of our chains 
allows us to find the limiting case in which we obtain the probability after any number of steps. 
With proper manipulation we can obtain a matrix B in which the rows represent the transient 
states and the columns represent absorbing states. A particular element of this matrix thus 
contains the probability of eventually ending in a particular state from a particular starting 
state. Stated in more concrete terms, this is the derivational probability of a particular output if 
starting from a particular input. This matrix can be calculated as shown in Figure 5 (see e.g. 
Grinstead and Snell 2006: 417-421). The identity matrix 1 here has a row and a column for 
every transient state. 
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Figure 5. Calculation of derivational probability matrix 

 
Applied to the voicing example, the resulting derivational probability matrix is as shown in 
Figure 6. 

 

Figure 6. Derivational probability matrix 
 

The probability of going from an initial input /bada/ to any of the possible output forms is 
given in the first row of B. Note that this result differs from the individual step probabilities; 
we will return to this point in the next section.  
2.4.  Error minimization  
In the preceding subsections we detailed a way of calculating the probabilities over final 
outputs given an initial input, as well as a particular GEN, CON, and constraint weighting. We 
must also consider how weights may be learned given an observed distribution over mappings 
from initial inputs to final outputs. In section 1 we stated the learning objective as maximizing 
the probability of the observed final outputs, which each had probability 1. Here we state the 
objective as error minimization, which is a more general formulation that is also suitable for 
real numbered probabilities over final outputs.  

A standard measure of model error is Kullback-Leibler (KL) divergence between the 
observed distribution p and the fitted distribution q (Kullback and Leibler 1951). The KL 
divergence between two distributions is the average log difference between them, with the 
average taken in terms of p. It is minimized (at zero) if and only if p and q are equal. Thus by 
picking weights w to minimize the KL divergence between the two distributions, we are 
choosing weights which best match the observed distribution. 

 

 
Figure 7. KL minimization 
 
In the present context, the observed and fitted distributions are probability distributions over the 
possible final outputs for each of a set of initial inputs; to get single distributions for 
optimization, we average over all inputs in calculating p and q, giving equal weight to the 
distribution for each input. The observed distributions for each input are given to the learner. 
Given the construction of the probability matrix B in the preceding section, we may easily 
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calculate the output distributions for each input, and hence values of q. By numerically 
minimizing KL, then, we are finding weights that come as close as possible to producing the 
observed probability distributions. 

3  An application to variation 

In the previous section, an abstract example was used to illustrate the calculation of 
probabilities over unbounded derivations. In that example, a pair of obstruents in a word like 
/bada/ changed their voicing back and forth from voiced to voiceless, travelling through the 
representational space of {[bada], [bata], [pada], [pata]}. Here we apply the learning model to a 
case of variation in natural language that can be characterized in a similar way. French ‘schwa’ 
is usually an orthographic ‘e’ and a phonetic back rounded vowel [œ]: the term schwa is used 
to refer to those instances of this vowel that alternate with zero. Given a phrase like je me 
prépare, where je and me both contain schwa, we will consider a representational space 
consisting of the four possibilities resulting from each vowel being pronounced or not. This 
space is illustrated in (12), using the French orthographic convention of notating a deleted 
schwa with an apostrophe. 
(12) Representational space for je me prépare ‘I prepare myself’ 

a. Je me prépare 
b. J’ me prépare 
c. Je m’ prépare 
d. J’ m’ prépare 

Our operations are schwa insertion and deletion, which can take either (12a.) or (12d.) back and 
forth from either (12b.) or (12c.). As in the example in section 1, vowel insertion only inserts a 
vowel between two consonants, thus keeping the representational space finite. 

We model some impressionistic data on the relative probability of the two pronunciations in 
(12b.) and (12c.) from Delattre (1949b: 46), who notes when a schwa is deleted, it is usually 
the second one, as in (12c.), but that the first schwa is also sometimes lost, as in (12b.). He 
estimates the occurrence of (12b.) as ‘…disons – moins d’une fois sur dix’ (‘let’s say less than 
once in ten’). We also include the contrastive case of je te répondrais, which Delattre states is 
usually pronounced with initial deletion as j’te répondrais, and sometimes as je t’ répondrais, 
‘peut-être une fois sur vingt’ (‘maybe once in twenty’). 

We use four constraints to derive this pattern. Delattre (1949ab) and Côté (2000) attribute 
the relative ill-formedness of je t’ répondrais to stops being difficult to produce and/or perceive 
without a following vowel. For the forms we are considering, in which [t] is the only stop, we 
use a constraint *t’ that penalizes [t] without a following schwa. Along the same lines, we 
might attribute the general preference for retention of the initial schwa to the fact that this 
allows both of the consonants to be adjacent to a vowel. For our data, it is sufficient to have a 
constraint *j’ that penalizes [ʒ] without a following schwa. As the constraint to motivate 
deletion we use simple *SCHWA, which penalizes each pronounced schwa. Finally, we also 
include a constraint that penalizes deletion of both schwas, as in (12d.). Following Grammont 
(1894), we use a constraint against a sequence of three consonants, *CCC. In all of this we 
simplify greatly relative to the complexity of actual French; see Eychenne (2006) for a recent 
overview of the generative literature. 
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We provided our learner with the distributions over the output patterns shown in the ‘Obs.’ 

(for Observed) column of (13). The relative probabilities of forms in rows (13b.) vs. (13c.) 
correspond to Delattre’s estimates. J’ me prépare is ‘less than one in ten’ with respect to Je m’ 
prépare and Je t’ répondrais is ‘one in twenty’ with respect to J’ te répondrais. French schwa 
deletion is generally described as optional, so the forms in row (13a.) must have some 
probability, but Delattre (1949ab) does not give any information about the likelihood of these 
types of pronunciation. We used values that our grammar model could represent.4 In particular, 
because the low probability of je t’ répondrais requires a relatively high weighted *t’ constraint, 
je te répondrais must get higher probability than je me prépare.  
(13) Distributions in learning data (Obs.), and produced by the grammar (Fit.) 

  Obs. Fit.   Obs. Fit. 
a. Je me prépare 0.13 0.125  Je te répondrais 0.6 0.605 
b. J’ me prépare 0.07 0.075  J’ te répondrais 0.38 0.374 
c. Je m’ prépare 0.8 0.8  Je t’ répondrais  0.02 0.02 
d. J’ m’ prépare 0 0  J’ t’ répondrais 0 0 

 
In this simulation, we abstracted from UR learning by assuming schwa-ful je, me and te (/ʒœ/, 
/mœ/, /tœ/) as underlying representations. The constraint weights were found using the same 
parameters as in section 1, that is, L-BFGS-B with regularization variance 100,000 and starting 
weights of zero. The ‘Fit.’ (for Fitted) column in (13) shows the probabilities that our learner’s 
grammar generates with these weights, calculated using the method described in section 2. The 
weights themselves are given beneath the constraint names in the tableaux below.  

The tableau in (14) shows the first step from underlying je te (the unchanging répondrais is 
omitted from the tableaux, which should be borne in mind especially in assessing *CCC 
violations). The probabilities generated in this first step are quite different from those in the 
table in (13). The probability of 0.425 for [ʒœtœ] in (14) is much lower than the total 
probability in (13), and the probability of the other outcomes is somewhat higher. The 
probability of [ʒœtœ] in (14a.) is the probability that the derivation converges on this first step. 
For the other outcomes, we can consider what happens on subsequent steps."
(14) First step from /ʒœtœ/  

 ʒœtœ *CCC"4.7"
*t’"
3.6 

*SCHWA"
1.98"

*j’"
1.84"  

a. 0.425   ʒœtœ   –2  –3.97 

b. 0.49 ʒtœ   –1 –1 –3.82 

c. 0.08 ʒœt  –1 –1  –5.58 

From (14b.), the second step is as shown in (15). We see that a significant portion of the 
probability (0.463) goes to [ʒœtœ] (15a.), from which the next step would be again as in (14). 
Since the probability of convergence would then be 0.425, we have just added 0.096 (= 0.49 
× 0.463 × 0.425) to the probability of [ʒœtœ] as a final output, bringing us somewhat closer 
(0.521) to the total probability of 0.605. The probability of convergence in the second step is 
given in (15b.). Note that we abstract from the optional devoicing of [ʒ] when it is adjacent to 
[t], which would occur in a subsequent step. 
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(15) A second step from /ʒœtœ/  

 ʒtœ *CCC"
4.7"

*t’"
3.6 

*SCHWA"
1.98"

*j’"
1.84"  

a. 0.463   ʒœtœ   –2  –3.97 

b. 0.535 ʒtœ   –1 –1 –3.82 

c. 0.001 ʒt –1 –1  –1 –10.13 

For the second step from [ʒœt] (14c.), even more of the probability is granted to [ʒœtœ] (16a.).  
(16) Another second step from /ʒœtœ/  

 ʒœt *CCC"
4.7"

*t’"
3.6 

*SCHWA"
1.98"

*j’"
1.84"  

a. 0.832   ʒœtœ   –2  –3.97 

b. 0.166 ʒœt  –1 –1  –5.58 

c. 0.002 ʒt –1 –1  –1 –10.13 

We have just seen, then, why the probability of this grammar mapping initial /ʒœtœ/ to final 
[ʒœtœ] is higher than the probability of the single step of [ʒœtœ] mapping to itself. The 
probability of SR [ʒœtœ] comes not only from the probability of converging to it on the first 
step, but also from the probability of the other outputs of the first step, [ʒtœ] and [ʒœt], 
mapping back to [ʒœtœ] in the second step and then converging on [ʒœtœ] in the third, as well 
as from the probability of all of the infinitely many other derivational loops that wind up 
eventually converging on [ʒœtœ].      

The above three tableaux show the probabilities from inputs at three of the four points in 
our representational space for je te répondrais. The last case is the input [ʒt], which can arise in 
the third step from /ʒœtœ/ through either tableau (15) or (16). 
(17) A third step from /ʒœte/  

 ʒt *CCC"
4.7"

*t’"
3.6 

*SCHWA"
1.98"

*j’"
1.84"  

a. 0.851   ʒtœ   –1 –1 –3.82 

b. 0.147 ʒœt  –1 –1  –5.58 

c. 0.002 ʒt –1 –1  –1 –10.13 

This tableau shows that not only is it improbable for [ʒt] to be produced as an output for either 
[ʒœt] or [ʒtœ], it is also improbable for the derivation to then converge in the next step. The 
case of [ʒt] illustrates how the probability of an ultimate output can be much smaller (in this 
case 0.000001) than the probability of any of the individual steps that produce it. 

4  Conclusions 

The introduction of this method for learning serial constraint-based grammars has several 
immediate positive consequences, and also opens up a number of avenues for future research. 
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The first immediate consequence is that as we have just demonstrated in section 3 for French 
‘schwa’ deletion, it is now possible to find a grammar in the serial framework that generates a 
given probability distribution over surface representations (if that probability distribution can 
be represented with a given set of constraints and operations, and modulo any local minima – 
see the next paragraph). This has the same practical benefit for linguistic analysis in the Serial 
Variation framework proposed by Kimper (2011a) as that of learning algorithms for stochastic 
theories in parallel OT and HG (and slightly further afield, of regression models for variable 
rules theories as introduced in Cedergren and Sankoff 1974). A second immediate consequence 
is that it is now possible to compare the ability of a serial theory to capture particular attested 
patterns of variation to that of parallel theories, so that we can now potentially bring fine-
grained probabilistic data to the question of whether a serial or parallel theory is better 
supported empirically. Finally, this work demonstrates that any difficulties imposed by the 
hidden structure of serial derivations are not necessarily insuperable. Despite an apparent 
increase in the information learned — namely, an extension to non-surface forms — we obtain 
encouraging learning results. 

As hinted at in the last paragraph, one avenue for future research is the determination of the 
extent to which serial derivations introduce or remove local minima in learning problems. Once 
these sorts of differences between parallel and serial theories are identified, then one might next 
ask which learning theory better characterizes human behavior, or study ways in which the 
local minima might be avoided. It may of course be the case that serial derivations introduce 
intractable local minima that do not correspond to human learning difficulties, but we currently 
have no reason to suspect that this is true (or false).  

Another important avenue for further research is the development of gradual learning 
algorithms in this framework, which could be used in modeling the course of human language 
acquisition.  

A final, additional, area for future research is the extension of these methods to other serial 
constraint-based grammatical frameworks. The formal problem of learning these sorts of 
grammars — stochastic or categorical — in, for example, Stratal Optimality Theory (Kiparsky 
2000) or the derivational version of Targeted Constraints theory in Wilson (2013) seems very 
much the same as the problem approached here. With appropriately adapted construction of the 
relevant Markov chains, our strategy might well yield useful learning frameworks for these 
theories as well. 
 

Notes 

 
1 This research was supported by the National Science Foundation under grant 

S121000000211 to the first author and grant BCS-0813829 to the University of Massachusetts 
Amherst. We are grateful to an anonymous reviewer for comments on a draft of the 
manuscript, and to members of our grant group for discussion. 

2 It is not clear whether all cases of this type could be analyzed using a gang effect between 
constraints wanting stress in particular locations: it’s likely that early stress placement would 
need to be compelled by a constraint penalizing stressless words, as in Elfner (this volume). 
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3 Although the exclusion of harmonically bounded candidates is guaranteed to result in 

finite graphs, their inclusion does not always break finiteness. In both of the simulations 
reported in sections 1 and 3, harmonically bounded candidates were included in the candidate 
sets. The representational spaces remained finite because epenthesis was in both cases limited 
to applying between consonants. 

4 This was done by repeatedly fitting the grammar to hypothesized observed distributions. 
The final observed values were chosen as values that came close to, but weren’t exactly the 
same, as what the fitted values would be. We offer this simulation as only a demonstration that 
our learner can cope with unbounded derivations; comparisons of this particular learner and/or 
constraint set to others would of course not proceed in this way.    
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