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Introduction

What representations are needed for learning of phonological
generalizations in neural networks (NNs)?

This was a central issue in the applications of NNs to learning
of the English past tense in Rumelhart and McClelland (1986)
and in following work of that era
The question can be addressed anew given subsequent
developments in NN technology

In this talk we will cover recent research at UMass Amherst:
Are variables needed for phonological assimilation and
dissimilation? (JP based on work by Amanda Doucette)
Are variables needed to model learning experiments involving
reduplication (e.g. Marcus et al. 1999)? (BP)
What kind of architecture is necessary for the full range of
natural language reduplication? (MN)

Our general conclusion will be that standard variable-free* NN
architectures handle the cases we have examined (cf. Berent
et al. 2012: LI on Hayes and Wilson’s MaxEnt model)
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Neural net basics
We’ll start with an intro to NNs from Pater (2019)

This net maps from 2 Input features to an Output node that
is either On or Off (Perceptron = NN in Rosenblatt 1957 et
seq.)
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Neural net basics
This table shows how the net responds to 4 objects, activating the
Output node for just the black ones

That is, when the weighted sum of Input feature activations
exceeds the 0.5 threshold for activation of the Output node
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Neural net basics

Famously, this simple type of net cannot do ‘exclusive or’ XOR
classification (Minsky and Papert, 1969)

E.g. no set of weights will lead to activation of the Output
node for only the objects that are +Black and +Star, but not
those that have both features (black stars)
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Neural net basics
The addition of a ‘hidden’ layer between Input and Output nodes
increases the net’s expressive power, allowing it to do XOR
classification
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Neural net basics
First, the hidden layer (Node 1 in bold):

Node 1 is activated only for the black star
Node 2 is activated for the black objects and stars
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Neural net basics

The output:

A negative weight on Node 1 lowers the weighted sum for the
black star beneath the 0.5 activation threshold

Only the white star and black triangle activate the Output
node
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Representations in RM 1986

Rumelhart and McClelland (1986) used a single layer net; the
concept of a hidden layer will be important to understand
what follows (RNNs)

They used fairly standard phonological features in their Input
and Output representations (though this is usually not
recognized in linguistic critiques)

The difficulty was how to deal with ordering of features
through time

The triphone ‘Wickelfeature’ representations they adopted
were a central focus of Pinker and Prince’s (1988) critique
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Recurrent neural nets (RNNs)
The now standard approach to ordering through time is the use of
a recurrent neural net (RNN; Elman 1990, 1991)

At each step in a sequence, the net includes a copy of the previous
step’s hidden layer (‘context’ below) in the generation of the
output
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RNNs and alpha variables

Doucette (2017) shows that the adoption of an RNN has
consequences for phonological representation

With an RNN, alpha variables (Halle, 1962) may not be
necessary to make assimilation and dissimilation ‘special’

Moreton (2012):

Single feature phonotactic generalizations across segments are
easier to learn than those involving multiple features

E.g. ‘if C1 is [+Voice] C2 is [+Voice]’ is easier than ‘if C1 is
[+Voice] C2 is [+Coronal]’

This can be modeled by using alpha variable representations
in a feedforward net
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RNNs and alpha variables
Doucette’s training data, like the human experiments in Moreton
(2012), had a space of 256 CVCV items, with 128 In and 128 Out
(but the network saw all the data, labeled).
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RNNs and alpha variables
Training was done using on-line gradient descent with random
initial weights; learning time was to greater probability for ‘In’ than
‘Out’.

The assimilation and dissimilation patterns (3 and 4) were learned
more quickly than the analagous 2-feature pattern (6).
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Reduplication and Neural Networks

Another phonological phenomenon that has been linked to
variables is reduplication, which involves the copying of all or
part of a word (Marcus, 2001; Berent, 2013).

Definitions for what constitutes a variable are hard to nail
down, although Marcus (1999) suggests that a variable could
be any part of a model’s architecture that explicitly compares
the similarity of two points in time.

Linguists have proposed several ways of representing
reduplication that fall under this definition (e.g. Marantz,
1982; McCarthy and Prince, 1994).
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Infant Learning of Reduplication

Marcus et al. (1999) ran an experiment to test whether
variables are necessary in models of cognition:

Infants were exposed to one of two reduplicative patterns:
either ABB (e.g. [wofefe]) or ABA (e.g. [wofewo]).
They then gave the infants novel words made up of segments
absent from training.
The infants listened longer to novel stimuli that violated their
pattern, suggesting that humans can generalize reduplication
to novel words and segments.

Simple RNNs trained on the same data failed to generalize to
words with novel segments.

Marcus et al. (1999) argued that neural networks’ lack of
explicit variables were to blame for this lack of generalization
(see also Marcus, 2001).
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Beyond Simple RNNs
Neural networks have advanced considerably since Marcus
et al. (1999) attempted to simulate their experiment.
Prickett, Traylor, and Pater (2020; henceforth PTP) wanted
to test a more modern neural network to see if it could
generalize like the infants did.
PTP’s model differed from simple RNNs in 3 ways:

It used a sequence-to-sequence (Seq2Seq) architecture
(Sutskever, Vinyals, and Le, 2014).
It used LSTM layers (Hochreiter and Schmidhuber, 1997).
It was regularized using dropout (Srivastava et al., 2014).
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Seq2Seq Networks
Originally, simple RNNs could only map between strings of
equal lengths, but Sutskever, Vinyals, and Le (2014)
introduced Seq2Seq networks to overcome this limitation in
the domain of machine translation.
They did this by connecting two separate RNNs (an encoder
and decoder) via connections in the networks’ hidden layers.
Seq2Seq networks have been useful for modeling
morphological (Cotterell et al., 2016; Kirov and Cotterell,
2018) and phonological mappings (Kirov, 2017), since these
often involve insertion and deletion of segments.
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Modeling Marcus et al. (1999) without Explicit Variables

To simulate the Marcus et al. experiment, PTP:
1 Pretrained a Seq2Seq model on 1,000 random words created

from the syllables in the experiment.
2 Trained the model on the experiment stimuli (repeated 1,500

times), represented as vectors of phonologically informed,
numerical features.

3 Measured the model’s mean squared error on the test data,
averaged over 50 runs in each condition (ABA and ABB).

For both of Marcus et al.’s experiments (each of which had
slightly different stimuli), the model had significantly more
error on novel words that didn’t follow the reduplicative
pattern the model was trained on.
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Why did the Seq2Seq network succeed?
The Seq2Seq model seems to have succeeded where past
models failed (although, for similar successes, see Alhama and
Zuidema, 2018; Beguš, 2020).
To better understand why, PTP probed the network using
Berent’s (2013) scopes of generalization:

Novel words/syllables (predicted by any analysis other than
memorization)
Novel segments (predicted by variables and feature-based
copying)
Novel feature values (predicted by variables only)
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Finding the Network’s Scope of Generalization

To do this, PTP trained the model on mappings of the form
C1V2 → C1V2C1V2 and then tested it to see if it could
correctly map novel inputs.

We ran 25 simulations for each of Berent’s scopes of
generalization, with and without dropout.

Training data consisted of every possible word, given a
randomly produced segment inventory, except the data that
were being withheld for testing.

Features in training were all either −1 or 1, so mappings in
testing were considered successful if every feature value in
every segment of the output had the correct sign (−/+).
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Scope Results

The results above show that, without dropout, the network
can only generalize consistently to novel syllables.
But with dropout, the model is able to generalize to novel
segments a majority of the time (although novel feature
values are still impossible).
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Dropout + Pretraining = Successful Generalization

The results from our probe into the model’s scope of
generalization revealed that with dropout, the network could
generalize to novel segments.

Since most past attempts to model the Marcus et al.
experiment did not use pretraining (although, see Seidenberg
and Elman, 1999), their models had to generalize to novel
segments in testing (and couldn’t, likely due to their lack of
dropout).

Crucially, the Marcus et al. (1999) experiment didn’t test
generalization to novel features values.

We’re not aware of any experiments that convincingly test
humans for this scope of generalization (although, see Berent
et al., 2002; Berent, Dupuis, and Brentari, 2014; Berent et al.,
2016, for claims to the contrary).
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Computing natural language reduplication

PTP showed a seq2seq model that can generalize
reduplication

Gasser (1993) failed to get RNNs to learn a similar
reduplication pattern, and proposed that ‘a variable of some
sort’ might be needed

Weiss, Goldberg, and Yahav (2018) showed that with finite
precision and saturating activations, RNNs are regular

Natural language (total) reduplication is not regular, so it
should not be computable by an RNN
PTP focus on a case with a small alphabet and fixed string
and reduplicant lengths - regular reduplication

Is PTPs success attributable to the fact that they test a
simple reduplication pattern?
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Computing natural language reduplication

Merrill et al. (2020) show that adding a decoder to an RNN
increases its expressivity

Only discusses single non-linear layer, no analysis of RNN
decoder
Weiss et al. (2018) does not preclude the possibility that
seq2seqs can generalize total reduplication

The component RNNs in a seq2seq are regular, natural
language reduplication is not, but the complete seq2seq
architecture may be more expressive than its parts.
So can seq2seq networks without variables learn natural
language reduplication?

Nelson et al. (2020) scale up seq2seq reduplication to realistic
scale and complexity
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Pushing seq2seq reduplication

Unlike PTP, who focus on Marcus et al. (1999)’s experiments
and consequently only test fixed-size reduplicants, Nelson et
al. (2020) test cases in which reduplicant size is variable

Fixed window, initial foot, and total reduplication

Seq2seq models trained/tested on 7000 + 3000 unique
reduplication I-O mappings generated from a library of
transducers (Dolatian and Heinz, 2019)

Manipulate alphabet size and maximum string length

Not explicitly looking at the use of variables. However we are
testing networks with and without attention
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Attention
Unlike the normal
seq2seq architecture, a
seq2seq with attention
can look back at states
in the first RNN

The network directly
compares its states while
reading inputs to its
current state while
predicting an output
symbol

Resulting weights look
very much like
input-output
correspondences
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Reduplication with and without attention
First tested total, and 2-syllable on a small language with a 9
symbol alphabet and maximum string length of 10
Longer strings than PTP, and variable sized reduplicants, but
no novel segments/features
Models with attention generalize, models without do not
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Fixed window reduplication
Generalizing fixed-size reduplication (as in PTP) but with
variable length strings (not in PTP), we see that non-attention
models fail with realistic alphabet sizes and string lengths
Still not generalizing to novel segments/features, in that sense
an easier task than PTP
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Attention and variables
One of Marcus et al. (1999)’s original diagnostics for a
variable was that it explicitly compares the similarity of two
points in time

If this is accepted, seq2seq networks with attention are not
variable-free

Shultz and Bale (2001) describe Marcus et al. (1999)’s
definition as ‘highly idiosyncratic’, however they also define
variables as having bindings that are preserved and accessible
to future computation

A seq2seq model with attention saves the intermediate states
of the encoder but not their bindings.

Endress, Dehaene-Lambertz, and Mehler (2007) suggest that
Shultz and Bale (2001) use variables, because their model
encodes phoneme positions in the inputs.

In recurrent models the network has no way of knowing the
position of the current input in the sequence

Attention may be considered a variable, but only under a very
specific definition
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Discussion

To summarize, we presented results here that showed:
A simple RNN capturing a learning bias previously explained
using variables (i.e. alpha notation).
A variable-free Seq2Seq network capturing experiment results
involving the generalization of reduplication.
A network with attention being able to handle reduplicative
patterns found in natural language.

The question of whether NN attention is formally equivalent
to a variable needs further work
This question of whether variables are needed to capture
phonology has been the subject of a number of recent studies
that we’d like to look at with these models in future work:

Phonotactic Generalization (Berent et al., 2012; Gallagher,
2013) and learning biases (Gallagher, 2013)
Cross-modal generalization (Berent, Dupuis, and Brentari,
2014; Berent et al., 2016)

UCLA Colloq 2020

Representations in neural network learning of phonology 30 / 39



Intro RNNs and alpha variables Reduplication without variables Reduplication with attention Discussion References

References I

Alhama, Raquel G. and Willem Zuidema (2018). “Pre-Wiring and
Pre-Training: What does a neural network need to learn truly
general identity rules?” In:
Journal of Artificial Intelligence Research 61, pp. 927–946.
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Appendix I: Sample Attention Weights
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