Announcements 30 Jan 09

- Textbook

- Two copies on Reserve at DuBois library (3rd floor)
- Any question or issue?
- Homework with MasteringPhysics web system
- Please report problems to tech support team

TO DO

- By Tuesday morning (8 am on Feb 3)
- Complete the "Introduction to MasteringCollegePhysics" homework assignment
- This assignment does not count toward your grade but is necessary to get acquainted with MasteringPhysics web-based homework system
- By Wednesday morning (9 am on Feb 4)
- Buy PRS transmitter \& Use it during lecture

MOTION

- What is motion? What causes motion?

- How can we describe it?
- What changes?

S.Willocq
Frame 1

Chapter 1

Concepts of Motion and Mathematical Background

Topics:

- Motion diagrams
- Position and time
- Velocity
- Scientific notation and units
- Vectors and motion

Sample question:

As this snowboarder moves in a graceful arc through the air, the direction of his motion, and the distance between each of his positions and the next, is constantly changing.
What language should we use to describe this motion?

The particle model

A simplifying model in which we treat the object as if all its mass were concentrated at a single point. This model helps us concentrate on the overall motion of the object.
(a) Motion diagram of a car stopping

(b) Same motion diagram using the particle model

The same amount of time elapses

Types of Motion

What kind of motion is this?
A. A dust particle settling to the floor at constant speed
B. A ball dropped from the roof of a building
C. A descending rocket slowing to make a soft landing on Mars?

Quantifying Motion

Can we say more than just whether speed is constant, increasing or decreasing?
Does the ball drop on the surface of the Earth or the Moon? Can we quantify this?

Yes! But we need a coordinate system to quantify the changes in the position of the "particle" and compute displacements between successive points

Position

The position of an object is located along a coordinate system.

A possible motion diagram for a car traveling down the road:

Is the car moving to the left or to the right?

Position and Time Choose origin and axes for position measurement + origin of time

Describing motion requires that we determine both position and time
(a) Motion diagram of a car stopping

At each time t, the object is at some particular position. We are free to choose the origin of time (i.e., when $t=0$).

-
 the motion, we would assign $t=0$ s here.

Displacement

The change in the position of an object as it moves from initial position x_{i} to final position x_{f} is its displacement $\Delta x=x_{\mathrm{f}}-x_{\mathrm{i}}$.

Question about displacement

Maria is at position $x=23 \mathrm{~m}$. She then undergoes a displacement $\Delta x=-50 \mathrm{~m}$. What is her final position?
A. -27 m
B. -50 m
C. 23 m
D. 73 m

Question about motion diagram

Two runners jog along a track. The positions are shown at 1 s time intervals. Which runner is moving faster?

Question about motion diagram

Two runners jog along a track. The times at each position are shown. Which runner is moving faster?

A. Runner A
B. Runner B
C. They are both moving at the same speed

Speed

The car moves 40 m in 1 s . Its speed is $\frac{40 \mathrm{~m}}{1 \mathrm{~s}}=40 \frac{\mathrm{~m}}{\mathrm{~s}}$.

