Announcements 11 Feb 09

- Homework

- Homework \#2 due date postponed until Monday (both online and written homework assignments)
- Homework \#3 will be due on the following Friday though...

Exam 1 on Tuesday Feb 24 from 7 to 9 pm

- You need to get an "Evening Exam Conflicts" form from the Registrar's Office to be able to schedule a makeup exam
- More info on Monday

Motion with Changing Velocity (Part 1)

- Average Velocity

Can compute ratio between displacement and time interval for any pair of initial and final points

$$
v=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

i.e. constant velocity an object would have to travel to achieve the same displacement over the same time interval

- Instantaneous Velocity

Same calculation as before but over a very short time interval

$$
v=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

Instantaneous velocity at time t is the slope of the tangent line at that time (position-vs-time graph)

23

Acceleration

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}
$$

Acceleration is:

- The rate of change of velocity
- The slope of a velocity-versus-time graph

Which graph corresponds to this motion?

The object is moving to the right $\left(v_{x}>0\right)$ and speeding up.

The object is moving to the left $\left(v_{x}<0\right)$ and slowing down.

$v_{x}>0$
The object is moving to the right $\left(v_{x}>0\right)$ and slowing down.

$v_{x}<0$
The object is moving to the left $\left(v_{x}<0\right)$ and speeding up.

These four motion diagrams show the motion of a particle along the x-axis. Which motion diagrams correspond to a positive acceleration?

Start

2. Start

3.

4.

A. 1\&2
B. 3\&4
C. 1\&3
D. $2 \& 4$

These four motion diagrams show the motion of a particle along the x-axis. Rank these motion diagrams such that the motion with largest acceleration is ranked first. There may be ties.

A. 1,2,3,4
B. 1\&3,2\&4
C. 1\&4,2\&3
D. 1,2,4,3

Motion with Changing Velocity (Part 2)

- Displacement from velocity-vs-time graph

The velocity curve is
approximated by constant-
velocity steps of width Δt.

$\Delta x=v_{x} \Delta t$

Displacement = area under the velocity-vs-time curve

27

Motion with Constant Acceleration

Straight-line motion with equal change in velocity during any successive equal-time intervals \Rightarrow example: free fall
$a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{t_{f}-t_{i}}$
$\Rightarrow \Delta v_{x}=a_{x} \Delta t$
\Rightarrow Eq. $1:\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t$
Eq. 2 : $x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2}$
(b) Velocity divided into a rectangle of height

Eq. $1+$ Eq. $2 \Rightarrow$ Eq. $3:\left(v_{x}\right)_{f}^{2}=\left(v_{x}\right)_{i}^{2}+2 a_{x} \Delta x$

Dinner at a Distance, Part I

Chameleons catch insects with their tongues, which they can extend to great lengths at great speeds. A chameleon is aiming for an insect at a distance of 18 cm . The insect will sense the attack and move away 50 ms after it begins. In the first 50 ms , the chameleon's tongue accelerates at $250 \mathrm{~m} / \mathrm{s}^{2}$ for 20 ms , then travels at constant speed for the remaining 30 ms . Does its tongue reach the 18 cm extension needed to catch the insect during this time?

Dinner at a Distance, Part II

Cheetahs can run at incredible speeds, but they can't keep up these speeds for long. Suppose a cheetah has spotted a gazelle. In five long strides, the cheetah has reached its top speed of 27 m / s. At this instant, the gazelle, at a distance of 140 m from the running cheetah, notices the danger and heads directly away. The gazelle accelerates at $7.0 \mathrm{~m} / \mathrm{s}^{2}$ for 3.0 s , then continues running at a constant speed that is much less than the cheetah's speed. But the cheetah can only keep running for 15 s before it must break off the chase. Does the cheetah catch the gazelle, or does the gazelle escape?

Kinematics Equations (constant acceleration)

Notation in some of the homework problems and/or different textbook is often different:

$$
\begin{array}{ll}
\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t \\
\left(v_{x}\right)_{f}^{2}=\left(v_{x}\right)_{i}^{2}+2 a_{x} \Delta x & \text { equivalent to } \\
x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} & \begin{array}{l}
v=v_{0}+a t \\
v^{2}=v_{0}^{2}+2 a x \\
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
\end{array}
\end{array}
$$

These equations are valid to describe the motion of any object with constant acceleration

Beware: use only if initial and final points belong to a straight-line segment in the velocity-vs-time graph (const. a)

