Announcements 6 Mar 09

Homework

- Written homework \#5 due on Monday (@ start of class)
- Online homework \#5 due on Tuesday (by 8 am)

Newton's Second Law

Newton's second law An object of mass m subjected to forces \vec{F}_{1}, \vec{F}_{2}, \vec{F}_{3}, \ldots will undergo an acceleration \vec{a} given by

$$
\begin{equation*}
\vec{a}=\frac{\vec{F}_{\mathrm{net}}}{m} \tag{4.5}
\end{equation*}
$$

where the net force $\vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\cdots$ is the vector sum of all forces acting on the object. The acceleration vector \vec{a} points in the same direction as the net force vector $\vec{F}_{\text {net }}$.

Connection between motion and force
 drewh ar

$$
\begin{aligned}
& \text { Mass = property of an object that determines } \\
& \text { how it accelerates in response to } \\
& \text { an applied force } \\
& \text { Units of Force: } 1 \text { Newton }=(1 \mathrm{~kg}) \times\left(1 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& \text { from } \quad \vec{F}_{\text {net }}=m \vec{a}
\end{aligned}
$$

Three forces act on an object.

In which direction does the object accelerate?

A.
B.
C.
D.
E.

Free-body Diagrams

(1) Identify all forces acting on the object. This step was described in Tactics Box 4.2.
(2) Draw a coordinate system. Use the axes defined in your pictorial representation (Tactics Box 2.2). If those axes are tilted, for motion along an incline, then the axes of the free-body diagram should be similarly tilted.
(3) Represent the object as a dot at the origin of the coordinate axes. This is the particle model.
(4) Draw vectors representing each of the identified forces. This was described in Tactics Box 4.1. Be sure to label each force vector.
© Draw and label the net force vector $\vec{F}_{\text {net }}$. Draw this vector beside the diagram, not on the particle. Or, if appropriate, write $\vec{F}_{\text {net }}=\overrightarrow{0}$. Then check that $\vec{F}_{\text {net }}$ points in the same direction as the acceleration vector \vec{a} on your motion diagram.

Free-Body Diagram Example

A ball, hanging from the ceiling by a string, is pulled back and released. Draw a free-body diagram just after the ball is released.

Weight w
Along string (y axis):
net force $=0$
i.e. $T=w_{y}=w \cos \theta$ \Rightarrow net force is along x

Identifying Forces: Example 2

Block A hangs from the ceiling by a rope. Another block B hangs from A. Identify the forces acting on A.

Free-Body Diagram Question

An elevator suspended by a cable is moving upward and slowing to a stop. Which free-body diagram is correct?

A. B.

C.

D.
E.

26

Free-Body Diagram Example

Which of the following situations does NOT require that a net force act on the object?
A. An object speeding up.
B. An object changing its direction.
C. An object moving in a circle with constant speed.
D. An object first recedes, then comes towards you.
E. All of the above require a net force.

Force and Motion Sample Problem

In a grocery store, you push a $12.5-\mathrm{kg}$ shopping cart with a force of 14.0 N . If the cart starts at rest, how far does it move in 3.00 s ?

$$
\begin{array}{ll}
t_{i}=0 & t_{f}=3.0 \mathrm{~s} \\
x_{i}=0 & x_{f}=? \\
\left(v_{x}\right)_{i}=0 & \left(v_{x}\right)_{f}=? \\
a_{x}=? & a_{x}=?
\end{array}
$$

Use $F_{x}=m a_{x}$
$\left.\Rightarrow a_{x}=\frac{F_{x}}{m}=\frac{14.0 \mathrm{~N}}{12.5 \mathrm{~kg}}=1.12 \mathrm{~m} / \mathrm{s}^{2} \quad x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2}\right)$
$x_{f}=0+0(3.0 s)+\frac{1}{2}\left(1.12 m / s^{2}\right)(3.0 s)^{2}$
$x_{f}=5.04 \mathrm{~m}$

