Announcements 11 Mar 09

- Homework \#6

- Written homework due on Friday in class
\rightarrow check homework \#4 solution on blog for a review of how to add several vectors and find the magnitude of the sum

- Online homework due on Tue March 24 by 8 am

- Problem 5.22 Part A: give your answer with only 2 significant digits (i.e. round answer and drop less significant digits)
- Friction to be discussed during Friday's lecture (2nd and 7th problems)

3rd Law: How does the nail move into the wall?
We are dealing with two action-reaction pairs:

- If gentle tap of the hammer \rightarrow nail doesn't move $\rightarrow \boldsymbol{F}_{\text {HonN }}=F_{\text {WonN }}$

- If hammer hit hard \rightarrow nail does move $\rightarrow \boldsymbol{F}_{\text {HonN }}>F_{\text {WonN }}$

Free-body Diagram Question

Block A sits on top of block B. A constant force F is exerted on block B, causing block B to accelerate to the right. Block A rides on block B without slipping. Draw a free-body diagram of block A.

Chapter 5

Applying Newton's Laws

Topics:

- Equilibrium
- Using Newton's second law
- Mass, weight, and apparent weight
- Static and kinetic friction
- Applying Newton's third law

Sample question:
Before his parachute opens, why does this skydiver fall at a constant speed? And why does he suddenly slow down when his parachute opens?

Homework \#6 problem: Suspending a speaker

A loudspeaker of mass 25.0 kg is suspended a distance of $h=2.40 \mathrm{~m}$ below the ceiling by two cables that make equal angles with the ceiling. Each cable has a length of $\mathrm{I}=2.90 \mathrm{~m}$.

What is the tension T in each of the cables?

How should we handle such a problem?

Equilibrium

An object is in equilibrium when the net force acting on it is zero. In component form, this is

$$
\sum F_{x}=0 \quad \text { and } \quad \sum F_{y}=0
$$

Reminder: To add force vectors one adds the x-components and y-components of these vectors to find the x - and y -components of the vector sum

$$
\begin{aligned}
& \left(F_{n e}\right)_{x}=F_{1 x}+F_{2 x}+F_{3 x}+\ldots \\
& \left(F_{n e c}\right)_{y}=F_{1 y}+F_{2 y}+F_{3 y}+\ldots
\end{aligned}
$$

The magnitude of the net force vector is $F_{\text {net }}=\sqrt{\left(F_{\text {net }}\right)_{x}^{2}+\left(F_{\text {net }}\right)_{y}^{2}}$

The net force on each man in the tower is zero. $n_{\text {net }} \sqrt{\left(F_{\text {net }}\right)_{x}+\left(I_{\text {net }}\right)_{y}}$

Approach to follow for vector addition in written homework \#6
prepare First check that the object is in equilibrium: Does $\vec{a}=\overrightarrow{0}$?

- An object at rest is in static equilibrium.
- An object moving at a constant velocity is in dynamic equilibrium.

Then identify all forces acting on the object and show them on a free-body diagram. Determine which forces you know and which you need to solve for.
solve An object in equilibrium must satisfy Newton's first law. In component form, the requirement is

$$
\sum F_{x}=0 \quad \text { and } \quad \sum F_{y}=0
$$

You can find the force components that go into these sums directly from your free-body diagram. From these two equations, solve for the unknown forces in the problem.

ASSESS Check that your result has the correct units, is reasonable, and answers the question.

Equilibrium Example

A ball weighing 50 N is pulled back by a rope to an angle of 20°. What is the tension in the pulling rope?

Find the tension in this rope.

Vector Components

(a)

Relating angle and components:

- Angle θ defined relative to the positive x-axis
(easiest to keep angle positive from 0 to 360 degrees)
- Set your calculator for angles in degrees (if angles given in degrees)

Equilibrium Question

PRS
A rod is suspended by a string as shown. The lower end of the rod slides on a frictionless surface. Which figure correctly shows the equilibrium position of the rod?

Frictionless

