Announcements 30 Mar 09

- Office hours today
- Earlier than usual: 2:00 to 3:30 pm
- Homework \#7
- Online homework \#7 due on Tuesday by 8 am
- Written + online homework \#8 due on Friday
- Exam 2
- Tuesday April 7 from 7 to 9 pm
- Includes material from homeworks \#4, \#5, \#6, \#7, \#8
- See full info on course blog (next slides)
- Arrange makeup exams this week!

Calculating the Center-of-Gravity Position

MP)

tactics box 7.1 Finding the center of gravity

Exercise 12
(1) Choose an origin for your coordinate system. You can choose any convenient point as the origin.
(2) Determine the coordinates $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots$ for the particles of mass $m_{1}, m_{2}, m_{3}, \ldots$ respectively.
(3) The x-coordinate of the center of gravity is

$$
\begin{equation*}
x_{\mathrm{cg}}=\frac{x_{1} m_{1}+x_{2} m_{2}+x_{3} m_{3}+\cdots}{m_{1}+m_{2}+m_{3}+\cdots} \tag{7.9}
\end{equation*}
$$

(4) Similarly, the y-coordinate of the center of gravity is

$$
\begin{equation*}
y_{\mathrm{cg}}=\frac{y_{1} m_{1}+y_{2} m_{2}+y_{3} m_{3}+\cdots}{m_{1}+m_{2}+m_{3}+\cdots} \tag{7.10}
\end{equation*}
$$

Center of Gravity Sample Problem

An object consists of the three balls shown, connected by massless rods. Find the x - and y-positions of the object's center of gravity.

Center of Gravity Question

Which point could be the center of gravity of this L-shaped piece?

DEMO: Center of gravity toys

Chapter 8

Equilibrium and Elasticity

Topics:

- Torque and static equilibrium
- the spring force
- Hook's law
- Elastic materials
- The elastic limit

Sample question:

How does a dancer balance so gracefully en pointe?

Torque and Static Equilibrium

For an extended object to be in equilibrium, the net force and the net torque must be zero.
(a) When the net force on a particle is zero, the particle is in equilibrium.

(b) Both the net force and the net torque are zero, so the block is in static equilibrium.

(c) The net force is still zero, but the net torque is not zero. The block is not in equilibrium.

$$
\left.\begin{array}{l}
\sum F_{x}=0 \\
\sum F_{y}=0 \\
\sum \tau=0
\end{array}\right\} \quad \text { No net force }
$$

Interpreting Torque

Torque is due to the component of the force perpendicular to the radial line.

Lifting Weights, How Much Force?

What is the tension in the tendon connecting the biceps muscle to the bone while holding a 900 N barbell stationary?

What is the force exerted by the elbow on the forearm bones?

Solving Static Equilibrium Problems

MP) PROBLEM-solving $\begin{aligned} & \text { Strategy } 8.1 \\ & \text { Static equilibrium problems }\end{aligned}$

prepare Model the object as a simple shape. Draw a visual overview that shows all forces and distances. List known information.

- Pick an axis or pivot about which the torques will be calculated.
- Determine the torque about this pivot point due to each force acting on the object.
- Determine the sign of each torque about this pivot point.
solve The mathematical steps are based on the fact that an object in static equilibrium has no net force and no net torque.

$$
\vec{F}_{\text {net }}=\overrightarrow{0} \quad \text { and } \quad \tau_{\text {net }}=0
$$

- Write equations for $\sum F_{x}=0, \Sigma F_{y}=0, \Sigma \tau=0$. torque > 0
- Solve the resulting equations. torque < 0

ASSESS Check that your result is reasonable and answers the question.

Lifting Weights...

Note: we neglect the weight of the forearm since it is small compared to the barbell

Solve

$$
\begin{aligned}
& \sum F_{y}= F_{\text {tendon }}-F_{\text {elowow }}-F_{\text {barbell }}=0 \\
& \\
& \begin{aligned}
\tau_{\text {net }}= & F_{\text {elbow }} \times 0+ \\
& F_{\text {tendon }} d_{\text {tendon }}-F_{\text {barbell }} d_{\text {barbell }}=0
\end{aligned}
\end{aligned}
$$

$$
\Rightarrow F_{\text {tendon }}-F_{\text {barbell }}=F_{\text {elbow }}
$$

$$
3900 \mathrm{~N}-450 \mathrm{~N}=F_{\text {elow }}=3450 \mathrm{~N}
$$

$$
\begin{aligned}
& \tau_{\text {net }}= F_{\text {elbow }} \times 0+ \\
& F_{\text {tendon }} d_{\text {tendolo }}-F_{\text {barbell }} d_{\text {barbell }}=0
\end{aligned} \quad \Rightarrow F_{\text {tendon }}=F_{\text {barbell }} \frac{d_{\text {barbell }}}{d_{\text {tendon }}}
$$

$$
\Rightarrow F_{\text {tendon }}=(450 \mathrm{~N}) \frac{35 \mathrm{~cm}}{4.0 \mathrm{~cm}}=3900 \mathrm{~N}
$$

Problem 7.10 (homework \#7)

Force \boldsymbol{F}_{2} acts half as far from the pivot as force \boldsymbol{F}_{1}. What magnitude of \boldsymbol{F}_{2} causes the net torque to be zero?

Problem 7.20 (homework \#7)

A 3.60-m-long, 440 kg steel beam extends horizontally from the point where it has been bolted to the framework of a new building under construction. A 68.0 kg construction worker stands at the far end of the beam. What is the magnitude of the torque about the point where the beam is bolted into place?

