Announcements 1 Apr 09

Thursday office hours from now on

- Earlier than usual: 2:00 to 3:30 pm
- Homework \#8
- Written + online homework \#8 due on Friday

- Exam 2

- Tuesday April 7 from 7 to 9 pm
- Includes material from homeworks \#4, \#5, \#6, \#7, \#8
- See full info on course blog (next slides)
- Arrange makeup exams this week!

Solving Static Equilibrium Problems

PROBLEM-SOLVING

STRATEGY 8.1
Static equilibrium problems
prepare Model the object as a simple shape. Draw a visual overview that shows all forces and distances. List known information.

- Pick an axis or pivot about which the torques will be calculated.
- Determine the torque about this pivot point due to each force acting on the object.
- Determine the sign of each torque about this pivot point.
solve The mathematical steps are based on the fact that an object in static equilibrium has no net force and no net torque.

$$
\vec{F}_{\text {net }}=\overrightarrow{0} \quad \text { and } \quad \tau_{\text {net }}=0
$$

- Write equations for $\Sigma F_{x}=0, \Sigma F_{y}=0, \Sigma \tau=0$.

Counter clockwise rotation:

- Solve the resulting equations.
torque < 0
ASSESS Check that your result is reasonable and answers the question.

Choosing the Pivot Point

Meter Stick Demo

$$
\text { If } d_{2}>d_{1} \Rightarrow n_{2}>n_{1} \Rightarrow f_{s 2}>f_{s 1}
$$

Static Equilibrium Question

What does the scale read?
A. 500 N
B. 1000 N
C. 2000 N
D. 4000 N

What makes an object stable?

For an object to be stable, the center of gravity of the object must lie over its base of support

DEMO: soda can
lean against wall

Torque due to (d)
gravity causes it to fall over.

The center of gravity
Original base of support
is no longer above the base of support.

Which is more stable?

The ratio of the height of the center of gravity to the base of support is relevant to the overall stability of an object

The smaller the ratio, the greater the stability of the object

For the SUV, the center of gravity height h is 47% of t.

For the car the center of gravity height h is 33% of t.

Static Equilibrium Sample Problem

A 2-m-long board weighing 50 N extends out over the edge of a table, with 40% of the board's length off the table. How far beyond the table edge can a 25 N cat walk before the board begins to tilt?

The combined center of gravity is at the edge of the base of support. The board is about to tilt.

Sample Problem

Draw a picture showing all forces acting on the board
Choose point on the board in contact with the edge of the table as the pivot point
Require that the net torque about that point be zero:

$$
\begin{aligned}
& \tau_{\text {net }}=d_{\text {board }} w_{\text {board }}-d_{\text {cat }} w_{\text {cat }}=0 \\
& \tau_{\text {net }}=0.2 \mathrm{~m}(50 \mathrm{~N})-d_{\text {cat }}(25 \mathrm{~N})=0 \\
& \Rightarrow 10 \mathrm{Nm}-d_{\text {cat }}(25 \mathrm{~N})=0 \\
& \Rightarrow d_{\text {cat }}=\frac{10 \mathrm{Nm}}{25 \mathrm{~N}}=0.40 \mathrm{~m}
\end{aligned}
$$

Problem 8.38 (homework \#8)

If the person in the figure lowers his forearm with mass 1.2 kg to be 15° below horizontal, how much force must the biceps exert to hold the 500 g ball? Note that the "insertion point" where the biceps attaches to the forearm is always 4.0 cm from the elbow joint, and assume that the person's wrist remains unbent as they lower their forearm.

Problem 8.39 (homework \#8)

A man is attempting to raise a 7.5 m-long, 25 kg flagpole that has a hinge at the base by pulling on a rope attached to the top of the pole, as shown in the figure below. With what force does the man have to pull on the rope to hold the pole motionless in this position?

