Due on Friday 27 March 2009 at the beginning of lecture.
Write down your name and student ID number.

Consider the force due to gravity.
a. Given that the mass of the Moon is $M_{\text {Moon }}=7.35 \times 10^{22} \mathrm{~kg}$ and its radius is $R_{\text {Moon }}=1.74 \times 10^{3} \mathrm{~km}$, calculate the acceleration due to gravity on the surface of the Moon.
b. Given that the mass of the Earth is $M_{\text {Earth }}=5.96 \times 10^{24} \mathrm{~kg}$ and its radius is $R_{\text {Earth }}=6.37 \times 10^{3} \mathrm{~km}$, calculate the acceleration due to gravity 10 km above the surface of the Earth.
c. Given that the distance between the Earth and the Moon is $d=3.84 \times 10^{8} \mathrm{~m}$, show that a satellite located exactly in-between the Earth and the Moon at a distance of $90 \% d$ from the Earth experiences no net force (at least when only the gravitational force due to the Earth and the Moon at taken into account). Draw a diagram showing the forces acting on the satellite.

Show your work to get full credit.

