

Chapter 10 Energy and Work

Topics:

- Energy, what is it? What are the different forms of energy and how can energy be transformed or transferred?
- Work
- Kinetic, potential and thermal energy
- Law of conservation of energy
- Application to elastic collisions

2

Sample question:

Using just a fast run-up and flexible pole, how can a pole vaulter reach an astonishing 6 m (20 ft) off the ground?

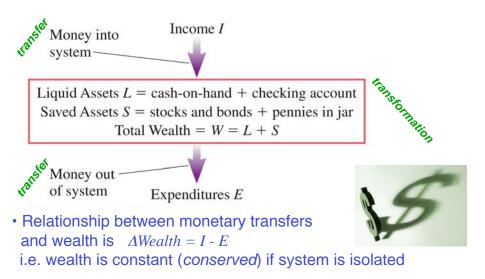
Different forms of energy

- What forms of energy do you know of?
- What do we mean by conservation of energy?

DEMO: energy toys, colliding masses

Work and energy

• Energy is the capacity to do work


There are many phenomena in nature that we associate with energy, and these phenomena may have little in common other than a connection to energy

3

4

- 1. light
- 2. heat
- 3. raising an object up
- 4. motion
- 5. electricity
- 6. radioactivity

Energy as a natural money

 Wealth is constant (conserved) if money is transformed from one form (e.g. cash) into another (e.g. stocks) inside syst,

Forms of energy

Kinetic energy K

Gravitational potential energy U_a

Energy of motion

Thermal energy E_{th}

Sum of molecular kinetic and potential energies

Chemical energy E_{chem}

Energy stored in molecular Energy stored in nuclear bonds (due to electric force) bonds (nuclear force)

Elastic or spring

Stored energy associated with stretching of object

Nuclear energy E_{nuclear}

6

Energy transformation

 $E_{chem} \rightarrow U_g$

 $E_{chem} \rightarrow E_{th}$

 $K \rightarrow E_{th}$

 $U_s \rightarrow K \rightarrow U_g$

7

Energy transfer: Work & Heat

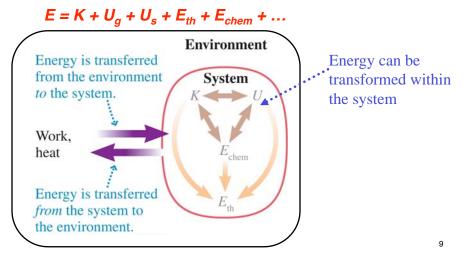
Work: mechanical transfer of energy to a body by application of a force

Heat: non-mechanical transfer of energy (due to a temperature difference btw environment and system)

Energy is transferred from the environment to the system

 $W \rightarrow E_{th}$

 $W \rightarrow K$



 $W \rightarrow U_s$

8

Energy model

- A system is characterized by a total energy E
- This total energy may consist of many different forms of energy

Energy transformation question 1 PRS

A child is on a playground swing, motionless at the highest point of her arc. As she swings back down to the lowest point of her motion, what energy transformation is taking place?

- A. $K \rightarrow U_g$ B. $U_g \rightarrow E_{th}$
- C. $U_s \rightarrow U_g$
- D. $U_g \rightarrow K$
- E. $K \rightarrow E_{th}$

Answer: D

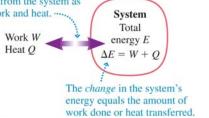
10

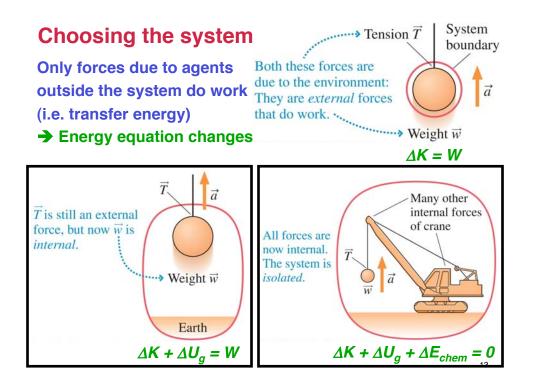
Energy transformation question 2

PRS

11

A skier is cruising down a slope at a *constant* speed. What energy transformation is taking place?


A. $K \rightarrow U_g$ B. $U_g \rightarrow E_{th}$ C. $U_s \rightarrow U_g$ D. $U_g \rightarrow K$ E. $K \rightarrow E_{th}$



Answer: B

Energy conservation

·	
Law of conservation of energy for ar isolated system The total energy an isolated system remains constant:	rgy of
The energies in the system are constantly but their sum is a constant: transforming from one kind to another it doesn't change. $K + U_g + U_s + E_{th} + E_{chem} + \ldots = E = constant$	(10.2)
Law of conservation of energy including energy transfers The change in the total energy of a nonisolated system is equal to the energy transferred into or out of the system as work W or heat Q :	
$\Delta K + \Delta U_{\rm g} + \Delta U_{\rm s} + \Delta E_{\rm th} + \Delta E_{\rm chem} + \cdots = W + Q$	(10.4)
Energy is transferred to or from the system as work and heat	

