Announcements 24 Apr 09

- Online homework grade
- Only 10 best scores are kept

- Homework \#11

- Written homework due at the start of class on Monday
- Online homework due on Tuesday by 8 am
- Problem 11.10:
- Assume mass of the person $=\mathbf{6 8} \mathbf{~ k g}$
- Power expended to ride a bicycle at a speed of $15 \mathrm{~km} / \mathrm{h}=480 \mathrm{~J} / \mathrm{s}$ (i.e. 480 W)
- 1 gram of gasoline corresponds to an energy of 44 kJ
- Exam 3
- Date change to Wednesday May 6 (7 to 9 pm)

The Ideal Gas Model

The temperature of an ideal gas is a measure of the average kinetic energy of the atoms that make up the gas

$$
T=\frac{2}{3} \frac{K_{\mathrm{avg}}}{k_{\mathrm{B}}}
$$

Typical (root mean square) speed of atoms in the gas

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 k_{\mathrm{B}} T}{m}}
$$

Thermal energy = total kinetic energy of N atoms

$$
E_{\mathrm{th}}=\frac{3}{2} N k_{\mathrm{B}} T
$$

Temperature Scales

- Celsius scale $\left(T_{C}\right)$
$0^{\circ} \mathrm{C} \quad$ freezing point of pure water
$100^{\circ} \mathrm{C}$ boiling point of pure water
- Fahrenheit scale $\left(T_{F}\right)$
$T_{C}=\frac{5}{9}\left(T_{F}-32^{\circ}\right)$
- Kelvin scale (T)

$0 \mathrm{~K} \quad$ kinetic energy of atoms for E_{th} and
temperature calculations
$T=T_{C}+273$

Rank the following temperatures, from highest to lowest.

1. $300^{\circ} \mathrm{C}$
2. 300 K
3. $300^{\circ} \mathrm{F}$

PRS

Temperature differences are the same on the Celsius and Kelvin scales. The temperature difference between the freezing point and boiling point of water is $100^{\circ} \mathrm{C}$ or 100 K .
A. 1 then 2 then 3
B. 1 then 3 then 2
C. 3 then 2 then 1

Temperature Scales

- Celsius scale $\left(T_{C}\right)$
$0^{\circ} \mathrm{C}$ freezing point of pure water $100^{\circ} \mathrm{C}$ boiling point of pure water
- Fahrenheit scale $\left(T_{F}\right)$

$$
T_{C}=\frac{5}{9}\left(T_{F}-32^{\circ}\right)
$$

use Kelvin for E_{th} and

- Kelvin scale (T) temperature calculations 0 K kinetic energy of atoms is zero $T=T_{C}+273$

Rank the following temperatures, from highest to lowest.

1. $300^{\circ} \mathrm{C}$
A. 1 then 2 then 3
B. 1 then 3 then 2
2. 300 K
3. $300^{\circ} \mathrm{F}$

Thermal Energy Question

Two containers of the same gas (ideal) have these masses and temperatures:

- Which gas has
 atoms with the largest average thermal energy?
- Which container of gas has the largest thermal energy?
A. P, Q
B. P, P
C. Q, P
D. Q, Q

Thermal Energy Question

PRS
Two containers of the same gas (ideal) have these masses and temperatures:

- Largest average thermal energy corresponds to largest temperature, i.e. container Q
- Largest thermal energy corresponds to largest tota/ thermal energy, i.e. container P
Box P: $E_{t h}=\frac{3}{2} N_{P} k_{B} T_{P}=\frac{3}{2}\left(5 N_{Q}\right) k_{B}(273+0) K$
Box Q: $E_{t h}=\frac{3}{2} N_{Q} k_{B} T_{Q}=\frac{3}{2} N_{Q} k_{B}(273+50) K$

$$
\frac{\left(E_{t h}\right)_{P}}{\left(E_{t h}\right)_{Q}}=\frac{\left(5 N_{Q}\right)(273 K)}{N_{Q}(323 K)}=4.34
$$

Ideal Gas Speeds

What are the rms speeds of a nitrogen molecule (mass $4.5 \times 10^{-26} \mathrm{~kg}$) at the following temperatures?
A. Room temperature: $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$
B. Coldest temperature on earth: $-129^{\circ} \mathrm{F}\left(-89^{\circ} \mathrm{C}\right)$
C. Polar night on Mars: $-133^{\circ} \mathrm{C}$
D. Coldest laboratory temperature: 0.5 nK

Ideal Gas Speeds

What are the rms speeds of a nitrogen molecule (mass $4.5 \times 10^{-26} \mathrm{~kg}$) at the following temperatures?

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 k_{\mathrm{B}} T}{m}}
$$

A. Room temperature: $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$
B. Coldest temperature on earth: $-129^{\circ} \mathrm{F}\left(-89^{\circ} \mathrm{C}\right)$
C. Polar night on Mars: $-133^{\circ} \mathrm{C}$
D. Coldest laboratory temperature: 0.5 nK
use Kelvin scale for $\mathrm{E}_{\text {th }}$ and temperature calculations
A: $T=273+T_{C}=273+20=293 \mathrm{~K}$

$$
v_{r m s}=\sqrt{\frac{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(293 \mathrm{~K})}{4.5 \times 10^{-26} \mathrm{~kg}}}=510 \mathrm{~m} / \mathrm{s}
$$

C $: T=273+T_{C}=273-133=140 \mathrm{~K}$
$v_{r m s}=\sqrt{\frac{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(140 \mathrm{~K})}{4.5 \times 10^{-26} \mathrm{~kg}}}=359 \mathrm{~m} / \mathrm{s}$
D: $v_{r m s}=\sqrt{\frac{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)\left(0.5 \times 10^{-9} \mathrm{~K}\right)}{4.5 \times 10^{-26} \mathrm{~kg}}}=6.8 \times 10^{-4} \mathrm{~m} / \mathrm{s}$

Warming the Dorm

A college student is working on her physics homework in her 98 square foot dorm room with an 8 ft ceiling height. Her room contains a total of 6.0×10^{26} gas molecules. As she works, her body is converting chemical energy into thermal energy at a rate of 125 W . Her body stays at the same temperature, so all of this thermal energy must end up in the air of her room.

How much does this increase the temperature of the air in her room in 10 minutes of studying? Assume that her room is an isolated system (dorm rooms can certainly feel like that) filled with an ideal gas.

Warming the Dorm

Find the temperature rise in the room

Know	Find
$N=6.0 \times 10^{26}$	$\Delta T=?$
$P=125$ Watt	
$\Delta t=10 \mathrm{~min}$	

Power $P=\frac{\text { energy }}{\text { time }}$
$\Delta E_{t h}=P \times \Delta t=(125 \mathrm{~W}) \times\left(10 \mathrm{~min} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=75 \mathrm{~kJ}$
$\Delta E_{t h}=\frac{3}{2} N k_{B} \Delta T$
$\Rightarrow \Delta T=\frac{\Delta E_{t h}}{\frac{3}{2} N k_{B}}=\frac{75000 \mathrm{~J}}{1.5\left(6.0 \times 10^{26}\right)\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)}=6.0 \mathrm{~K}$

Heat

Heat is the energy transfer during a thermal interaction
Heat and work are two different ways of transferring energy to and from a system

The flame heats the water.

The spinning paddle does work on the water.

Heat

Atomic Model of Heat

Consider system 1 at temp. T_{1} and system 2 at temp. $T_{2} \quad\left(T_{1}>T_{2}\right)$

A thin barrier prevents atoms
from moving from system 1 to 2 but still allows them to collide.

Collisions transfer energy from the warmer system to the cooler as more energetic atoms lose energy to less energetic atoms. This energy transfer is heat.

Thin barrier $\}$

Thermal equilibrium occurs when the systems have the same average translational kinetic energy and thus the same temperature.

Heat is energy transfer during thermal interaction between the two systems; energy transfer stops at thermal equilibrium $\left(\mathrm{T}_{1}=\mathrm{T}_{2}\right){ }_{78}$

First law of thermodynamics For systems in which only the thermal energy changes, the change in thermal energy is equal to the energy transferred into or out of the system as work W and/or heat Q :

$$
\begin{equation*}
\Delta E_{\mathrm{th}}=W+Q \tag{11.14}
\end{equation*}
$$

Energy Transfer Question

Consider your body as a system. Your body is "burning" energy in food, but staying at a constant temperature. This means that, for your body,
A. $Q>0$.
B. $Q=0$.
C. $Q<0$.

