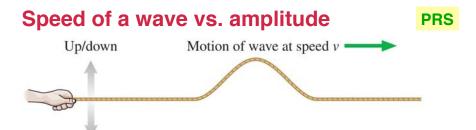
Announcements 6 May 09

Homework #13 (last one!)

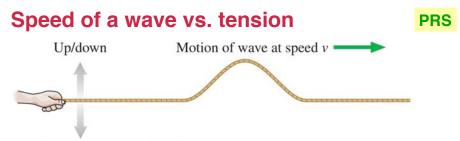
- Written homework due on Monday in class
- Online homework due Tuesday by 8 am


Exam 3

- TONIGHT from 7 to 9 pm

Types of Waves

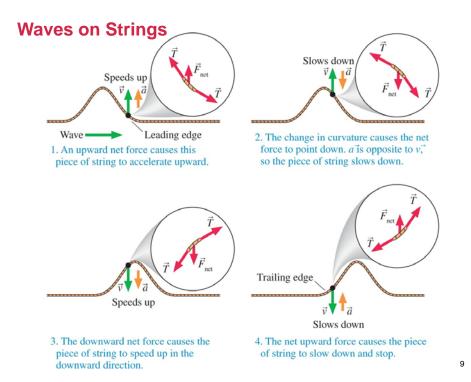
DEMOS: Waves on a string, slinky, shive, stands Up/down Motion of wave at speed vTransverse wave or pulse Push/pull Motion of wave at speed v


Longitudinal wave or pulse

How does the speed with which the wave propagates along the string change when it is shaken more vigorously?

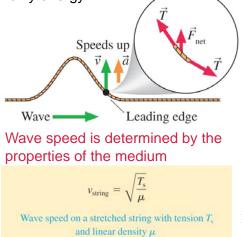
- A. The speed decreases.
- B. The speed increases.
- C. The speed stays the same.

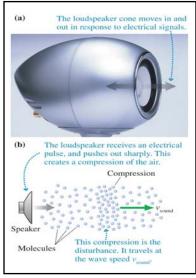
DEMO: Wave on a string



How does the speed with which the wave propagates along the string change when the string tension increases?

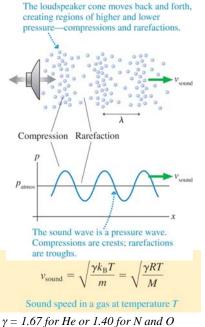
- A. The speed decreases.
- B. The speed increases.
- C. The speed stays the same.


DEMO: Wave on a string


7

Waves on Strings and in Air

- Mechanical waves are disturbances that propagate through a medium
- Wave moves away from the source but no material or substance is transferred, only energy


String of mass *m* and length *L* Linear density $\mu = m/L$

Sound Waves

Wave speed is determined by the properties of the medium

TABLE 15.1 The spe	eed of sound
--------------------	--------------

Medium	Speed (m/s)
Air (0°C)	331
Air (20°C)	343
Helium (0°C)	970
Ethyl alcohol	1170
Water	1480
Human tissue (ultrasound)	1540
Lead	1200
Aluminum	5100
Granite	6000
Diamond	12,000

See animation at

http://www.kettering.edu/~drussell/Demos/waves/wavemotion.html

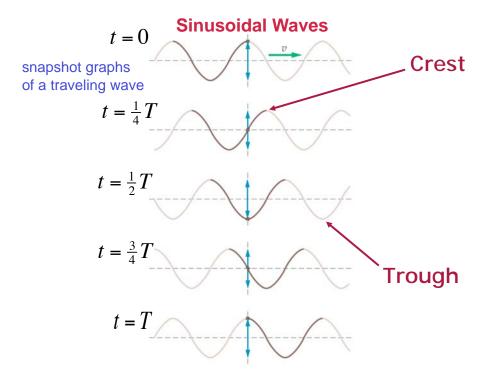
 $m = \text{mass of atom}, k_B = 1.38 \times 10^{-23} \text{ J/K}$

Traveling wave problem

A particular species of spider spins a web with silk threads of density 1300 kg/m³ and diameter 3.0 μ m. A typical tension in the radial threads of such a web is 7.0 mN. If a fly lands in this web, which will reach the spider first, the sound or the wave on the web silk?

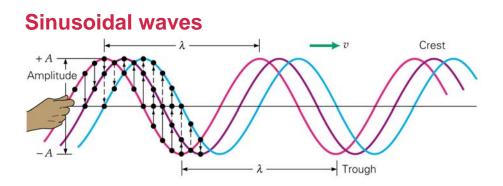
Know : $\rho = 1300 \ kg / m^3$ $d = 3.0 \ \mu m = 3.0 \times 10^{-6} \ m$ $T_s = 7.0 \ mN = 7.0 \times 10^{-3} \ N$ Find : v_{thread}

Traveling wave problem


$$v_{thread} = \sqrt{\frac{T_s}{\mu}} = ?$$

 $\rho = \text{density} = \frac{\text{mass}}{\text{volume}} = 1300 \text{ kg/m}^3$
 $\mu = \text{linear density} = \frac{\text{mass}}{\text{length}} = ?$

Know :
 $\rho = 1300 \text{ kg/m}^3$
 $d = 3.0 \ \mu m = 3.0 \times 10^{-6} \ m$
 $T_s = 7.0 \ mN = 7.0 \times 10^{-3} \ N$
Find : v_{thread}


volume of cylindrical thread = (area of circular cross section) x (length)

$$\Rightarrow \rho = \frac{\text{mass}}{\text{area circle x length}}$$

$$\Rightarrow \mu = \rho \times (\pi r^2) = (1300 \text{ kg/m}^3) \times \pi \times \left(\frac{3.0 \times 10^{-6} m}{2}\right)^2 = 9.18 \times 10^{-9} \text{ kg/m}$$

$$v_{thread} = \sqrt{\frac{7.0 \times 10^{-3} N}{9.18 \times 10^{-9} \text{ kg/m}}} = 873 \text{ m/s} > v_{sound} = 343 \text{ m/s}$$

Wavelength λ = Distance from crest to crest or from trough to trough

Each point also oscillates with period T We also know that in time T the pattern repeats and the wave has traveled a distance of λ

See animation at http://rt210.sl.psu.edu/phys_anim/waves/wave1.gif

15

The propagation velocity is given by

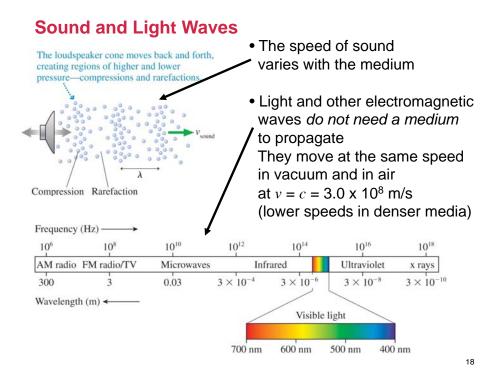
$$v = \frac{\lambda}{T} = \lambda f$$

Example

The range of sound frequencies audible to the human ear extends from about 20 Hz to 20 kHz. If the speed of sound in air is 343 m/s, what are the limits of this audible range expressed in wavelengths?

Demos: Ripple tank with frequency-varying source

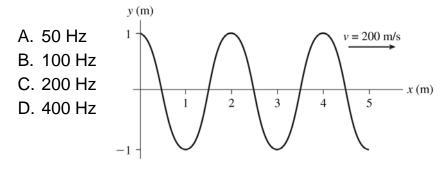
Know : Find :


$$f_1 = 20 Hz$$
 $\lambda = ??$
 $f_2 = 20 kHz$
 $v = 343 m/s$
using : $v = \lambda f$

$$\lambda_1 = \frac{v}{f} = \frac{343m/s}{20Hz} = 17.15m \text{ (lowest pitch)}$$
$$\lambda_2 = \frac{v}{f} = \frac{343m/s}{20 \times 10^3 Hz} = 0.01715m \text{ (highest pitch)}$$

Example

17


Therefore we can hear sound waves that have wavelengths of about 17m to 1.7cm

Wave frequency question

PRS

For this sinusoidal wave, what is the frequency?

