PHY-602: Statistical Physics, Midterm

Show all your work for maximum credit.

I. THERMODYNAMICS (25 POINTS)

- 1. Consider an ideal gas at temperature T_i in a thermally isolated container of volume V_i . The volume of the container is instantaneously increased so the gas expands into vacuum to a final volume $V_f = 2V_i$, still within adiabatic walls. What is the temperature of the gas after this sudden expansion process? Compute the increase of entropy associated with this irreversible expansion.
- 2. Show the Maxwell relation $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V$.
- 3. The equation of state of an ultrarelativistic gas is $p = \frac{E}{3V}$. Show that adiabatic processes for such a gas are characterized by $PV^{4/3} = \text{const.}$

II. NUCLEAR SPINS IN A SOLID (25 POINTS)

A solid contains N non-interacting spin-1 nuclei which can each be labelled by a quantum number m=-1,0,1. Because of the interactions within the solid, a nucleus in the state m=+1 or m=-1 has the same energy $\epsilon>0$, while its energy in the state m=0 is zero.

- 1. What is the free energy of a system of N nuclei at temperature T?
- 2. Compute the heat capacity of this system and discuss its high- and low-temperature limits.
- 3. What is the entropy of this system, again as a function of T?

III. DNA ZIPPER (25 POINTS)

A (very) simplified theory for the unwinding of two-stranded DNA molecules models the system as a zipper that has N links, each of which has two states: closed (energy 0) and open (energy $\epsilon > 0$). The DNA molecule ("zipper") can only unzip from its left end, and link s can only open if all the links to the left of it are already open.

1. Assuming that the zipper is in contact with a thermal reservoir at temperature T, show that the partition function of the zipper reads

$$Z = \frac{1 - e^{-\beta \epsilon (N+1)}}{1 - e^{-\beta \epsilon}}.$$
 (1)

2. Find the average number of open links. Sketch your result as a function of temperature and discuss the high and low temperature limits.

FIG. 1: Open and closed links in a single-ended zipper. Figure from C. Kittel, American Journal of Physics 37, 917 (1969).

IV. IDEAL GAS WITH ADSORBING SURFACE (25 POINTS)

Consider a classical ideal gas of N (indistinguishable) particles of mass m at a temperature T and pressure p. The particles can either move freely in a volume V, or be adsorbed on a surface with area A with an attractive potential ϕ . The particles on the surface form a two-dimensional ideal gas, where the energy of an adsorbed particle is $\epsilon_{\mathbf{p}} = \frac{\mathbf{p}^2}{2m} - \phi$ where \mathbf{p} is the two-dimensional momentum and ϕ is the binding potential. Let N_s be the number of particles adsorbed on the surface, and N_g the number of remaining particles moving freely in the volume V (so that $N = N_g + N_s$).

- 1. Compute the free energy of the free (non-adsorbed) gas with N_g particles.
- 2. What is the chemical potential μ_g of the free gas particles, as a function of N_g , V and T?
- 3. Compute the free energy of the two-dimensional gas of N_s adsorbed particles.
- 4. Show that the chemical potential μ_s of the adsorbed particles reads

$$\mu_s = -\phi - k_B T \ln \frac{A}{N_s \lambda_T^2},$$

with λ_T the thermal de Broglie wavelength.

5. The free gas particles and the absorbed gas particles are in equilibrium. What is the density N_s/A of the adsorbed particles? Express your results in terms of the pressure p, the binding potential ϕ and temperature T.