PHY-602: Statistical Physics, UMass Amherst, Problem Set #1

Romain Vasseur

Due: Friday, Sept 15. (Late homework receives 50% credit.)

I. RANDOM WALK IN ONE DIMENSION

Let us consider a random walk in one dimension. At time t=0, the walker is at position x=0. At each time step Δt , the walker moves either forwards or backwards by an amount a with equal probability. Let $x(t=N\Delta t)$ (with $N \in \mathbb{N}$) be the position of the walker at time $t=N\Delta t$ —corresponding to N time steps.

- 1. Write $x(t = N\Delta t)$ as a sum of N independent random variables. Using the central limit theorem, compute the mean and the variance of x(t) at long times.
- 2. Let us recover this result explicitly. What is the probability P(n, N) to find the walker at position $x(t = N\Delta t) = na$ (with $n \in \mathbb{Z}$) after N steps?
- 3. Using Stirling's formula for $N \gg 1$, expand $\ln P$ assuming that n/N is small (why is this justified?). Show that the resulting distribution is Gaussian. What is the variance of n (or x = na)?
- 4. Yet another way to recover this result is to write down a "rate equation" for $P_N(n)$ (this is more easily generalizable to higher dimensions). Express $P(t = (N+1)\Delta t, x = n)$ after N+1 time steps in terms of the probability distribution $P(t = N\Delta t, x)$ after N time steps. Assuming that Δt and a are small with $a^2/\Delta t$ fixed, show that this rate equation becomes a diffusion equation

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2},$$

where you will give the expression of D in terms of a and Δt . The solution of that equation for an initial distribution $P(t=0,x)=\delta(x)$ satisfies $\langle x(t)^2\rangle=2Dt$: compare with the variance obtained above.

II. MAXWELL-BOLTZMANN DISTRIBUTION

In class, we showed that the probability of finding a particle in a classical gas with velocity between $\vec{v} = (v_x, v_y, v_z)$ and $(v_x + dv_x, v_y + dv_y, v_z + dv_z)$ is given by:

$$dP(\vec{v}) = \mathcal{N}e^{-\frac{mv^2}{2k_BT}}d^3\vec{v}.$$

- 1. Compute the normalization factor \mathcal{N} .
- 2. What is the mean value of $v = |\vec{v}|$?
- 3. What is the most probable speed of a particle?
- 4. Compute the average kinetic energy of a particle.
- 5. Compute the probability distribution of the kinetic energy of the particles.

III. CUMULANTS AND CHARACTERISTIC FUNCTION

The characteristic function of a probability distribution p(x) is defined as $\hat{p}(k) = \langle e^{-ikx} \rangle = \int dx p(x) e^{-ikx}$. The cumulants $\langle x^n \rangle_c$ of the distribution are defined through $\ln \hat{p}(k) = \sum_{n=1}^{\infty} \frac{(-ik)^n}{n!} \langle x^n \rangle_c$. Using the characteristic function, compute the cumulants and the first few moments of a normal (Gaussian) distribution with mean μ and variance σ^2 .