PHY-602: Statistical Physics, UMass Amherst, Problem Set #11

Romain Vasseur

Due: Wednesday, Dec 6. (Late homework receives 50% credit.)

I. SPECIFIC HEAT EXPONENT

At a second order phase transition, the free energy density scales as

$$f = A |T - T_c|^{2-\alpha} + \text{regular}$$
 and higher order terms,

with α a critical exponent.

- 1. How does the specific heat behave near the critical point?
- 2. Compute the exponent α for the Ising model within mean-field theory.

II. TRICRITICAL POINT

Consider a Landau expansion of the free energy of the form

$$F = \frac{a_0(T - T_c)}{2}m^2 + \frac{b}{4}m^4 + \frac{c}{6}m^6,$$

with c > 0.

- 1. Show that there is a line of critical transitions $T=T_c,\ b>0$ which joins a line of first order transitions $T=T_c+\frac{3b^2}{16ca_0}$ with b<0 at a point $(T=T_c,\ b=0)$. This special point is called a tricritical point.
- 2. Compute the magnetization exponent β at the tricritical point.
- 3. Sketch the phase diagram of this model in the (T, b) plane.