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Transverse Field Ising
Spin Chain

Just like the ZD classical Ising Model is the
"

Drosophila
"

of ( thermal ) phase transitions
,

we 'll see that the transverse
field Ising model is a prototypical example of a quantum
phase transition

.
( a phase transition driven by quantum instead

of thermal fluctuations ) ↳ at temperature T=o
We 'll show that in ltld

,
this model is exactly solvable

,

as it can be mapped onto non . interacting (
"

free
"

) Majonana
fermions .

In Passing ,
we 'll discuss a closely related model :

the Kitaeu chain
,

a model for a topological superconductor
in one  dimension .

In the next chapters
,

we will relate the quantum Ising
chain to the classical Ising model :

"

Quantum
- classical

correspondence
"

,
and we will derive a field theory for

the critical behavior near the quantum phase transition
.

IO Quantum Ising Model : phases and excitations

@ Ising Chain
.

Degrees of freedom : spins tz ( two level systems )

Hilbert space : H= ( ¢2)×0¥
# of spas

Model of
Hamiltonian "

µ=
. j[ q.to

,
?I

,

+ got quantum
magnetism

. . .f... I . .y . . y ...

Id chain
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and ot= ( loi ) 0×= ( it ) oY=( ?
'
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•
This model is interesting because there's a competition between

- OF0
,

?t
,

: favors aligned spins ⇒ ferromagnetic interactions

- 0i× : favors spins

pointing
in × direction :| →)=H ) +11 )

eigenstateopox ] Tz

Ultimately ,
this competition arises because [ o×,oZ] to

,
but

note that H = - § gxoixt gzq .Z would instead be trivial

(Why ? Think of - FEE
' )

f) because of ho×
@ Symmetries .

The transverse field Ising chain is

invariant under a Zz = Z/zz symmetry generated

by :

e= IT qx EEI :

Ektt . . .S=1ttP ... )
flips all spins

we have [ H ,E]=o using Eo×E=o×
Eoife=.io

.

.z



H 14^7 = Enka >
⇒ ( H ,E can be diagonal ized in )E 14

, ) = ± 14.7 the same basis

@ Phases and excitations

g > > I Disordered Phase ( Quantum paamagnet)

As
g→ a

,

H = - Jg ? g.
× which has a unique ground

- state

14.3=1→ → → ...
 → > with ts > = k¥115

Cleanly :Eta 14.5

In the z basis :

IYD=
¥2 ¥1 |{ ¥

superposition of all
States

Excitations :
li > = I → + .  . .  ÷,

g.¥. .  . → >

N such state $
,

all degenerate if we neglect - J [ Oitqyt .

• Energy gap D= 2J g over Eo = -
N Jg . ( degenerate )

.
Let's consider the effect  of - J

 

§ o
,?q?*,

within perturbation
- - theory .

V = perturbation
( jlvli ) = - J ( 8g ;i . ,

t 8g ; it ,
) : V moves spin flips

Hepp Ii ) = - J[ Ii - i ) Hits

>)
+ ( Eot2gJ ) Ii >

[ work in that single spin flip basis ( NXN matrix )



With periodic boundary conditions
,

Hepp can be diagonal ized using

Fourier transform : IK > =fn Tgeiktlj >
, lj ) t.tn feeiikilk>

1 o ) IIN ) ⇒ KN=2tn with n= 0,1 ,
... ,N - 1

as N → a
, KE[ . it

,
# ] Bsillouin Zone

=) (H -E.) IK) = ( 2Jg - 2J cosk ) IK )
-

{ aspin
flip EK

Y.ly#g
,

A =2J( g- i I energy gap

, Ek~- At JK
' at small K

- I IT

Quasi particle excitations = spin

ffip

Extending ( naively ! ! I this calculation valid forgsslto any g , we

see that the
gap for creating spin flips closes at

age1
.

gkl : Orderedphase ( Ferromagnet)

Now in the opposite limit
, gto ,

He - J ? q?q+f
Two degenerate groundStates : It ) = ftp. . . T )

1- ) = kt . . .ly } Break the

symmetry
el±)=t+ >

However
,

we need to be more careful ! Ferromagnet
:

Spontaneous symmetry
breaking



"

Interlude
"

: Spontaneous Symmetry Breaking ( i )

We can form (Y± ) =

It ) ± ( - ) Asto ground states
,

but
g-z now preserve the symmetry .

Those are macroscopic cat States
,

but they respect the symmetry .

The notion of 65 preserving on not the symmetry seems arbitrary .

•
To see what's going on

,
note that the degeneracy between

l4± ) is lifted by the perturbation V= - GJFFX .

Note however that the degeneracy if lifted only at Nth
order in perturbation theory !

( + |VN1- ) = gn ((1
It > I -7 but  to

Htoj = ( EgonSeno) ⇒ eigenstates 1y±)=Hf±z#
with

energy splitting S=lEt - E
.
I

=ocgn)a|
So for any finite size N

,
the true groundstate is 14+3

,

with an exponentially small splitting free
' Nl°8Y9 with 14

. ) .

However
.

Suppose we prepare the system in the state IPT - . t )
.

anIYCH ) = eiiett 14+7 +e-
'

' E- t
( y

. )
nota true

- eigenstate
Jz

Roba to find the system in It ) state at time t
:

PCH =1( +14471 '=coilEt]~i until tells
~ enbgkg



"

Interlude
"

: Spontaneous Symmetry Breaking ( ii )

So for N ~ 10
"

spins ,
It ) is essentially a

"

tree
"

GS for
all purposes ,

unless one is willing to wait t~ elo
"

to see

a fondling process to 1- ) .

"

Spontaneous symmetry breaking
"

More formally : let's add a small longitudinal field - hz.IO#
with hz Small ,

but large than 8 ( automatically satisfiedfor Nbc )

=) this will select "

It > as the true gnoondstate ( Ngnoeteaktghaetfz )

fnizmoofinga ( 9£ ) to in ferromagnetic phase

BROKEN SYMMETRY[ order parameter = ( GSIOIZIGS >
EOFE = - g.

t  '  '

odd
"

( g.
t ) = o everywhereD. order of limit : nlinsakiznnso

by symmetry

Another
way

to diagnose spontaneous symmetry breaking without

introducing a small ( symmetry breaking ) field is to look for long
range order in correlation functions : ( now hz=o

,
Gs ) . 14+7)

( Gsloitogt IGS ) to even as li . jlto (=fIf)
in particular

,
note that ( oitogt ) ¥ ( of ) ( og

? )=o
even for very distant spins i. j !

=) ordered phase
.

Note : this second definition is OK even for
the true ( cat state

, symmetry preserving)
groundskfe

< Eog > =L Ktloitogtk > + Eloitgtl . >) = 1



Excitations : spin flip : No ! TTTTLTT Energy cost dE=4J

Domain wall Ekink
"

) : list TTTT 11111 DE = 2J
I iti

Note : with PBC
, DW 's come in pairs ,

but they he really independent
excitations

.

Perturbation theory for gkl :
- Jg§q× moves DW

IT ) : DW between i and it , (position :
I itk )

( H - E.) IT ) = - gJ( litistli . D) + ZJK >

⇒ Ek= 2J ( 1 - gcosk )
DW

{
K

Iffy
,

A=2J(t.gl energy gap

, Eke A + JK
' at small K

- I IT

Quasi particle excitations =
DW

Again
, if we dose our eyes

and extend this result away from gkl•

we see that DW excitations become gapless at
g= gel .

.
Note that these results suggest a duality between the two
phases :

g- ←s Jg We he going
to make this more precise

in the next section
.



IIO Knamus
.

Wanniu Duality :

Let Is make this duality between the two phases more precise :

. let's start from the FM phase .

Excitation
, =

DW : Maffetti

. Map : spin configuration ⇐
�1� W configuration ( 2 to 1 ! )

Define : DW variable Ti×= qtq.at = {t lie no DW

ii. T.lk - 1 if DW

Note ; ( ¥ )E I and Txt
= T× between i and it ,

Create a DW : t£= II,
9.

×

: flip all spins to the night to T

Now : T.it Tj×= tjt Tilt if if j ( ifIT"  don't .sk#anyieiej: share two sites
)

and Tit tit= . F× tit ( share one site :ftp.?e-oIfY+,

)

=) Paulimatricesalgebra and (T×i2/2= I

Note that t.t.tt = g.
× local

=) H= - J § oitoiat + go ;×

= - J § Fix +

gtttt
Tti

Same Hamiltonian using these
"

dual
"

DW variables
,

but

different couplings : g -111g J → Jg



Remarks .

•
The FM phase of the T spins corresponds to the PM

phase of the o spins ,
and vice Versa .

•
The two phases are different :

PM of T 's has unique 65
,

which corresponds to the FM phase of the original 0 spins ,

which we Know has a  doubly degenerate GS ( for Nt a )
.

This is because this DW description is a 2
.

to -1 mapping !

Similarly ,
the FM phase of the T spins naivelyhasa doubly degene

- rate GS
,

which we Know is incorrect since it corresponds to the PM

Phase of the 5 spins ,
which has a unique 65

.
( This can be fixed by

treating the boundary conditions more carefully ,
on by fixing fig*at¥÷ft

, ,

.
Fixes critical coupling to : g ;

I ( Sdf dual point)

Physical picture :

PM phase Tt has an expectation value ( GSITTTIGS) . I
g→a

⇒ DW
"

condensate
"

165 ?g→=t¥µ!!04 >

( qtogt ) decays quickly ( exponentially) since this correlation flips
sign each time a

DW intervenes between iandj

FM phase ( ft ) to ordered phase
[ with caveats mentioned above !

DW
: ( Tit > =o DW are massive excitations

g=gc Quantum phase transition
. Natural variable =

Madonna
Fermions !



# Majonana Fermions and exact solution

We've seen that the two phases are  described by different variables :

.
PM :(

, gssit : GS = DW condensate ( ( Tit > to )
,

excitations = spin flips
9.t

. FM ( gkl ) . .GS = spin condensate ( ( Grt > to )
,

excitations = DW
( a.k.a. Ferromagnet ! ) Tit

"

Correct
"

variables . night at the transition ?

⇒
"

Attach spin to a domain wall
"

Correct variables they

let "

a ;= qttit = oitgftojx ( it - itk )

b
;

 = q Ytt
Jordan Wigna
transformation

( more on this later )

. If GDI : T.tn < Tits =L ⇒ air qt

gkl : Oita ( of > =( = , a ,
= ¥ } *Eo±¥i"pqYh

,

• Algebraic properties
{ ai

,
G. f=o

. ait . ai ,
bit = bi ( real ) and a

,

?= G
.

?= I

.
a

;
and bi are fermions : { ai , ajl = o ( it j )

( non - locality comes from
"

stringy"Io× ) { bi
, bjf = 0

,
{ ai ,

@
g.

to

This follows since the spin blip 9£@8D changes sign as it move ,

through the DW created by Fzt ( with j ( i )



Note : Dwt change = feemion in Id
| in higher d : attach change to vortex  ⇒

any ons

{ a ; ,bjf=o ⇒ Majonaaa ( real ) fermions !

{ ai
, ajf=2Sij Cgt=tz(aytibj )

tbi
, ejl=2sij g. = ÷ (

g
. .iq . )

)%%¥d
fermions

{ Cit
, cjf = Sij Ici

, cjto
} c it .cz#f=o

Remarkably
,

these fenonmionic variables will allow us to naturallydescribethe quantum critical point ⇒
"

Emerging Majonana Fermions
"

In fact
,

this description will lead to an Exact Solution !

. Express Spins in terms of fermions :

a
; b..  = oit Tito ;Y tit = g. toil (Tit )

'

= - if .×

a - -

- io ;× 1

and a ;bi= ( cittcil ( cit¥) =  ti ( citci - a. at )
= i ( Zn ;

 - , ) with

= . i f.)
" i ni = citg .

⇒ 0j×= - iajbj  
= fight H > ⇒Io >

Ks ⇒ Ii >
= I - 2nj

(Iida
,;) Fermions

aib, ; ,
= oittitoit? TIF = Oitoity 9. + ? = ioitqtfa -

iout
and a.ge#=l9jttql(GitIj.Git_ = - i ( cjtcjtt . cjtg ; ,

tcjcjtet - cjcjt ,



=)

og.to#t=-iag.b.j+.=cjtcjt.tcjtT.jtCjtfcjttcjcjt
,

We can therefore rewrite the Hamiltonian as :

H = - J ?

ftp.t.t
+ g g.

×
c-

spins

J J I
y

-

[=  

+Ji
g.

(

ajbyjetgajbj
) c- Majonana

fermions

=
- J

Tg ( cjtfcjtcjtfcjtthree
-

Dna
- 2g n ; ) t c st

Bunions

. Crucially ,
the Ising model is quadratic ( non . interacting ) in

terms of fermions =) Exact solution !

.
In the famionic language : 0× ←→ chemical Potential

Otot
: hopping t mean . field .

like superconducting term Citetcit

Majoraaa chain :
f

site i

f
; a ; bit ' 9in

•••••••••• ••••• ••••• •••••
•••✓••

••••• •••••

isgaib ;
\ is a. . bit

,

gsx :

•••u•••••u••••q•••••u•••••u•••••u•••••u•••••••u

[ Fermin citaitzlri in vacuum state Cilo ) = 0

ni  =o V. i



unpaired ( free ) Majonana edge modess

g=q•••••-•••••-•••••-•••••-•••••-•••••-•••••-•••••Go an[ define dual bunion ( shifted BY

kcsnitffaiq

, ,GS = Vacuum of these new fermions I 2

BIT : with free boundary conditions
,

there
are two

free Majonana edge modes :

[ H
,

bo ]=[ H
, an ]=o ( N sites )

( Zero modes : don't change the
energy ) : we can form a Dirac

bunion :

dt , lotzian this famion state can be occupied
on not in the GS ⇒ 2 degenerate

grounds fates

In the bulk
,

the two phases look identical
,

but the FM (symmetry
-

broken ) Phase for the spins maps onto a topological phase of the

fermions with no order parameter
,

and 2 Majonana edge modes
.

Note : .
the fermions in the Ising chain are purely formal ,

but some

1 d Superconducting wines can realize a similar topological fern ionic

phase
,

where the fermions are now Physical ( see Kitageyowhgin

.
The edge modes survive for g( gel ( gapped phase ) ]

Exact Solution : Let's work with the Dirac fermions cit since they 're

a bit more familiar .
Use Fourier transform :

Cr, =fn- Tycjeiikt ( Cg.  =lgn E caeikt )
CN = Co K= 4T

J
"



= 8k
,

#
'

Tgcjt.tcjte.a-1nyF.E.eisikikt@cktq.Ceikth.d÷ K

= §

2cosKnkfcjIgtth.a.hntEfE@kttfeskiItkcrtiikte.chtc.r

,t= - c.ktc

.kt⇒
Eikselgik

= E tisink ( c. ntcktt c. kck )
2

⇒ H = J§ 2 ( g
- ask ) ink - i sink ( c. ntcktt c. kck ) test

÷eats foermionnumber (mod)
( not quite diagonal : mixes K and - K modes)

t

Let ¥ = (EI)4kt=f¥f=f°
! ) 4.D-

K
K f-

not independent

⇒ t.IEItkt(
8- 05 k - i sink

)

¥
,

I sink - g* cos K

Eigen modes :
¥

,

= Urnstiutsftiswlkn
t.is?kaa)u=fEkIda 2

with Ek = 2J✓ FIFE ' Bogoliubou
transformation

"

t T
.

Rte.than ) ⇒ H=Eekftktdn- E) + a st
Name
modeg

excitations over GS
. dk ( GS ) = o

U =
unitary transformation

,
preserves ( anti)

.

commutation ttk

relations
.

dkilermion



First excited state : dotIGS )
,

with
energy gap D= ZJIG - 11

Yisaculously ,
this result valid for any g coincides with our estimates

from first order perturbation theory ( ! ! ! ) .

D
At g= g.

=L
,

the spectrum becomes

gapless

Low
energy spectrum : ( small K

:c " . e.io#ginmY.j"I
"

c =

"

speed of light
"

y= correlation

Emergent Lorentz symmetry in the spectrum ! length

At the critical point : Ek = CIKI gapless spectrum
( Ek -10 as K → o )

Vk= ?kEk=±C

Critical , Exponents :

. { ~ lg .

g.
l

'
"

with t.tl : Diverging correlation length

. Ek~K£
,

Z =L dynamical critical exponent

Symmetry :
t→d£t 2=1 for relativistic theory

xt A X ( time and space equivalent )

We 'll make this symmetry more explicit by studying the continuum
limit of this model in another chapter. This will be our first

example of how a Quantum field Theory emerges near a

quantum phase transition
.



@ Kitaev Chain and Majonana edge modes

In the Ising chain
,

we've shown that the FM (symmetry - broken)
phase was equivalent, up

to a Jordan Wigner transformation ,
to

a fermionic phase with Majinana edge modes . Can we realize
this phase using physical elections ?

Yes : Kitaev chain ( Id superconducting wine
, spin less electrons )

H = - t[ ( cititcith .a
.
) -

µ ? citcit BE ( cittcitth .c .

)

- - -

hoping chemical mean - field
potential Superconducting term

(
"

p . wave
"

: spinlesse )
This Hamiltonian can be diagaonalized ( HW # 1)

,
and has a phase

transition for y= 2J
.

.
For p ( 2J : Topological Superconductor phase with Majoana

edge modes
.

µ zero energy
a b

. A # Majonana Zero modes localized near the
end of the wire

.

. Majoaana  = Yz of an electron ( fractionalization )

. Example oftopologicalphase ( no order parameter , edge States)

.
Form. a qbit : ITS . dtlos dt=a±

It ) = Io ) 2

In principle , protected from deuohaeace ( non local object
,

protected by topology )
. In practice :

.

finite wine

. T > 0 : excitations in the

bulk



Can be realized using a spin .
orbit coupled wire t proximity

- induced superconductivity + external magnetic field .



Dirac Hamiltonian and Majonana zero modes ( Hw )

Near the transition,
the Kitaev chain is described by a Dirac

Hamiltonian

:y={ ( at . . cntc
,

. . .cn ) HB.io#hIn+)

[
ZNXZN matrix  = Bogoboliubou

De Genncs Hamiltonian

in K space : H . ftp.2twsk ) cater,
+ A §

Zisinkfktc

.tn
= EE Center.

) Hao (Yg )
the )

=)

ftp.fkd
= ( - Ztcosk - f) Tzt 2A sink 'T (2×2 mak, , ,

a
Pauli matrices in BDG space

-Spectrum :
E  = ± ✓ (2twsktµ)2t4D2siiK

linearize at small K for gap closing near p= - 2t :

E = t.fm#2E
'

Dirac spectrum m= - p - Zt

Hpsdgkl~
.

m Tz + zdkty
neo

toppaoafogcid

m > trivial phase
⇒ Hpsdg = MTE - 2Di2×Ty

Majonana zero mode : Imagine a Domain Wall in space

f.
" × '



Let's look for a zero .
mode ,

H

#
= 0 ¥ = (¥+)

⇒ it
,

ZD 2×41×1 = m ( x )tz4Cx )

=) 2×4=61 = MCI Tx 4=41
ZD

Solutions : Ek ) =Cexpftxfxdxmzkgl) 4=61

linearly independent solutions : 4=6 ) = C exp (±f×m(I ) (! , )( diagonalize Tx ) ZD[Eigen values of Tx
normalizable only if m change , sign !

⇒ Zero mode 4Ix1=cexp( - f. Ix
mztgl) ( j )

Majoana Zero mode ( real solution )
exponentially localized near Domain Wall

^

m.ME#Fg?aYpaas.

Topological phase
=) Boundary between mso

and m ( o regions hosts a

localized Majorana zero model
.

Microscopically :

Ci

••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••

^
-÷

o region ) m > 0 region
Majonana zero mode


