
Scale Invariance and the RG



Scale invariance and a brief
Introduction to the Renormalization Group

- on this chapter
,

we 'll study some of the scaling ( critical )

properties of the Ising modelusing the field theory description :

S={fdzdE[X+2X+ - X. JX .tiD×+X]
that we derived in the previous chapter

.
In the process ,

we 'K

discuss the symmetries of the action at criticality ( A :o) :

Scale and conformal invariance .
We 'll also introduce some

basic of the

Renormalization

group
to introduce scaling

dimensions and critical exponents This analysis will also justify
the gradient expansion of the previous chapter ,

and explain why
the critical properties of the Majonana Theory apply to all spin
systems with a22 symmetry ( in ltld ⇐) classical Zd )

going beyond the exactly solvable case of the Ising model
.

=) Universality

& This chapter is NIT meant to be a thorough intro
.

-
duchbn to the Renormalization Group ( RG )

. If you're not

familiar with the idea of RG in Stat
.

mech
.  and condensed mat

- ta
,

this chapter will give you at@es.t a vague  introduction
,

and

I recommend that
you

take P8l7 next year ( which is basi
- cully entirely dedicated to the RG : 014 theory ,

E . expansion

etc
. ) . If you

took that coarse ( on equivalent 1
,

this chapter
should be a good reminder

.



IO Scale invariance
,

Conformal invariance and correlation functions

• Scale invariance Consider the To
,

critical action D= 0

L=EtX
.

IX. + X+2x+) and s : fade

LOYNIYYLINIt's invariant under rescaling : X → dx X±t I "2X±
Tt AT

Z= dw

2. =i'2w ⇒ S = tfdwde

#
It .

+ F+2wF
.
)

dt=×dw
with X~± = Fl X±

Focus on

X.
: <

t.tt
,
)

t.kz
) )=( Xlz

,
. E) X 61 )

=I' TXTEEE),i¥,kgnskkon
.  -

=) ( X(z ) No ) ) = C- c- unimportant wnsknk

-  - z Z= Xtit
= x - t

Note : Of course
,

we could 've computed this correlation function
directly in the path integral formalism as a Gaussian integral

:
<

X.tt/tD~tsJils.neJk)=thhEEysmam

. Conformal invariance : In fact ,
the action is invariant under

an infinitely large group of symmetries called conformal group( preserve angles in Zd )
w=fCz ) 2w=¥*2 .

dude =3 #sjeedzdzI = gtt )



¢
dropped Yn

x. H=C¥t"ix. at
×+iehf¥)kx¥,

In general .

.pe#ids:$(w.e1=ffFfhfffI)tifCz.E1
( h ,I )

= conformal weights

ex :X
.

:( a. El :( ¥ "
X+X .

:C's
, th

X+ : ( h
,
E) =p ,k ) -

called
energy / thermal

operator
. Drives the transition

.

Under a scale transformation : w=ZA
⇒ ¢( a. E) = X.

A

lot ,E) with D= hth

Scaling Dimension

Rotation w=ei$z  =) $(w,e ) . eilti . h )
loft ,E1

s= h - [ :

"

conformal spin .

" ( Not crucial for uss )
Fixed byTwo point function : f$(z,E1 $6,01 ) =

C-
conformal

z2h EZE invariance
For fields with s= o ( h = E) called sedan operator :

k$4 ) $6 ) ) = Say with ZE =

12-12=5D= 2h

.
Convince yourself that if $ is a primary field

,
derivatives

like 2
"

$ are not primary fields .
Those me called

"

descendants
"

and they still transform as oT= dd " ¢ under scale tnanspo
.

with An . Dtn



What is this formalism good for ?

Let's say we now want to compute a correlation function at finite
temperature T

.
This means we should consider the theory on a

cylinder with ( anti ) periodic boundary conditions in imaginary time
.

In principle ,
we could do this calculation using discrete Sums over

Matsubara frequencies ,
but there's a much more elegant way

to proceed :

P

Conformal mapping : HE )W=£tYg2aye § f
Z= e YFW

Complex planeQHOI Cylinder
"

to
" "

Finite T
"

w= Xtit

z .

.

lzleio ⇒ IH =e2%× o=2pIt TEG ,p )

on cylinder F- 0 result
- kz -

< X. (w.lxtw.DE#IwiTkfEwd) ¥
.

¥
,
'E=R⇐e¥w,

= 2¥
e%(4+4 ) c 2T C

⇒¥ ".euTp%
P

Zsinhhtgcwixdf

inite Twnekton

spatial correlation : fx.KIX.to ) ) ~ 14 bon ×K{t=Ph
W ,= X

Thermal correlation
Kao

~ e- ×§+ for xD { ,

length



⇒ finite T cuts off critical ( algebraic ) correlations
.

L= Na

@ RG in a nutshell
' d : k :2En=2az±

ields ¢(× ) = Egneikxq,

lattice Kenya
Maximal

momentum
= UV cutoff

Main idea : Coarse
. grain / integrate out

"

fast "/highenergy ,lshort scale

degrees of freedom

¢kl=E%eik×9.
+ Fennel"×&*

⇒ q :
momentum Shea

G. el= Itf

. Integrate out $
,

: Z=§¢ Is #
. §$< (fD§Es)

[ easier said than done
.

. . FED
⇒ New effective they 5 [$<] with cutoff NIAEP

eff

.
Scale transformation : K → KG so NE %-) ^

Now Seq [ 01
,

] and S[$] have the same cutoff but

different couplings :
{ Kilt } K ; '{ =Re({ kit ) RG

flow
eg : A in Ising A → d

' etc
.



The idea of
"

the
"

RG is to iterate this transformation to

get rid of microscopic / high energy degrees of freedom
,

and

gain information about coarse grained , long wave . length properties .

.
RG fixed points: |Ki*f=Re({ki*f ) Theories invariant

Under RG transformation
for us ,

those will be CFT 's
: conformal invariance .

•
Perturbations : Once we've identified a fixed point

,
we can

study its stability against small perturbations Ski -

- Ki - KY .

Couplings that take us away from the fixed point are called
Relevant

Perturbations that flow back to Ki* are called irrelevant .

perturbations that don't flow are called marginal

# Universality of the Ising transition

Ve 'll see more explicit applications of the RG later on in this
course

.

For now
,

we 'll adopt a

"

quick and dirty way
"

to  do
A�6� to leading order

, by essentially reducing the problem to

dimensional analysis ( =

"

tree level "
RG ) .

Let's go
back to the Ising action in the Dirac fermin

formulation ;

Sfdtdx @2+4 + E[ 43×4-42×4]td44]
- Freund "

"

critical
"

part of the action = So
perturbationinvariant under × → @ X

4 →f-" 24
T -5ftJDnftz

scaling dimension of 4



.

Under this transformation
,

we have :

d) dxdt 54 → @fdxdtyy } Obviously
,not

new coupling g/
invariant

.

DI bd > D : coupling grows under RG , relevant
perturbation

if we write b= el ⇒ dyed = ly;.tt#=tdt=valid onlyFM D= o PM for small
< < • > > A s

Majoran . CFT

.
Correlation length : Length scale } =

b
a

at which D has

evoked to be 04 ) : d( b) =

bB=% D= 041
a

=) { ~ D
' "

with d=l

. Universality : Say we 'd like to study a modified Ising

chain :

H= - JE (oitoint *go .

.× ) + J
,

'

? 9×0.1
"

small
"

perturbations t Jz
'

? g. tout t ...

preserving the Ischg symmetry
E- . t.to;×

This model also has a transition between a PM and a FM
phase at

g- . g. CJ
,

'

, Ji ) 41 .



Unlike the Ising model
,

this model isn't exactly solvable as it

maps onto interacting ( non quadratic ) fermions after a Jordan Wigna
transformation ( Check this ! )

.
However

,
the universal properties

of the transition like the critical exponent D= I are unchanged !

( for all J
,

' ,Ji
,

... ) 948 - Sal
' '

*
uneven

Teti
,

non

Why? Field theory of the modified model : universal

~ ~

L= 43+4 + E (4-2×5.42×4) tD44 + X

,YT2I5tdd42gH
'

also present for ) t .  . . )
IEJE .

o : higher order interaction
term in gradient expansion (Tty )2=o

.

-

Now : c # 2J and Dx ( g- GDJIJI )) t ...
to leading

- order
Taylor expand D= o for g= go

Scale transformation : d. fdxdt 4-2×25 → Xiqfkdtysx 't

d
, fKdt(52×5)

'

→ Xy¢|d×dtk2×4)
"

=) day = - d
,

⇒ irrelevant couplings : decrease under RG

hoarse graining .

¥¥ = - 2h
⇒ can be ignored .

. This justifies a posteriori our gradient expansion : 4214
irrelevant

.

. This also explain universality : interactions in Majonana theory

(4-2×4)
"

are irrelevant !



,
.

.

N
×

, } irrelevant couplings

✓ €D~lg-g.ly#,.oo..PIew.irdinei.n
^

. General leading order RG :

( D=  d +1=2 for on case )

So =

fdbx
Lo and 1061061 ) ~xtzjodo : Scaling dimension of field O

under Scale transformation :
O → f- AOO

If we now perturb So with 0 : 5=5
,tdfdxdOC× )

dfpxokl→deisdofdxokl* .
renormalized coupling

,
@

=
el

⇒ 0¥ = (D - d.) d =) relevant ie Dokd .

Examples : Ising CFT : Duty =L : relevant

Dyzny = It n : irrelevant for n > 1

D(yzxnygm= m ( Itn) dimensional analysis [4]=k
[ 2×7=1


