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Gauge Theories and

Topological Order

n this chapter : Ztld systems
,

phase transition with no local
order parameter .

IO Ztld Ising Model and Duality

H= - JES. ,oit9it - h ?9×
p p p pp

.
For HKJ : FM Phase

p p p p p to }}( almost . I degenerate 65
T T T T T version

.
Excitations :

gfytp@ytptflkYeitscatgsmeIefoops.net
point .

like

. String like
"

excitations

. theory of such closed strings = binary
Version of electromagnetism .

•
DW Operator :

• dual lattice

I \
linkif that crosses ij



Let T 's live on the links of the dual lattice ( since DW

naturally live on the dual lattice )
.

As in ld :

T¥j
= g. toy ? counts DW between

i and j .

However : N sites
,

2N links ⇒ 2N T 's !

we need N constraints
.

⇒
.

2

FIFEt.IT#tyCqtoi9oitgtgtqtqtgEgtgt

=•
I •

z4 I ⇒ local constraint

we write :

IT T
×

= 1kitesoe the=
+ is dual lattice

sets of 4 links that emerge from
site I on dual lattice

spinal :p operator :

tgtgitg Is ftp.?..tg#ffyg

=\ g.
× creates loop of DW : flips the value of DW operator T×

on all bonds surrounding the lattice site i
.

r2
5 g.

×
=

TE Tt ftp.t = ITTZ• o
'

• } K 5 15 5
D ;

•
[ flag# "

of
4 the dual lattice



⇒ H= - J[

t¥
- htg IT

It
links ijED is

cigs
Constraints

:
-VI : IT T×= 1 ¥commute : caashm

.

+
0 on 2 links

C- 112=1

Clearly :
.

the Zfid Ising model isn't

self
dual !

.
As in ld

,
the mapping isn't I to 1 :( no symmetry breaking

and 65 degeneracy for the Gauge theory at small h )

IO 212 Gauge Theory

n the following ,
we will forget about the Ising model

,

and treat the dual gauge theory as
"

fundamental
"

.

H= - J[[T× tgttgtttttttt ] T 's live on

links of square
lattice

lIT×=1 for all it [ T.si here ]

Gauge invariance : H invariant under local 21L gauge
transformation :

Tijt → E
; Tijt ej with ei.tl E Iz

T× unchanged .



H is invariant for any
such local transformation .

This is

Sometimes called
"

local symmmetny
"

,
but this is really a Gauge

redundancy of the theory . This transformation doesn't really
change States like a spin flip symmetry in the Ising model

.

6,143=14 ) States invariant under Gauge transformation

↳ generates Gauge transformation with Ei= - I

Ej= I tjti

Gi=fT
;

T× ( flips the sign of all Tt 's emanating
from i )

⇒ constraints ensures Gi=| : Keeps only physical
States .

212 Electromagnetism : T£= ei 'T aid
'

a. g.
 = 0,1

ij

lot TZ = ei 'T Ea
= eitb "

flux
"

through Paquette

let T×= elite so H ~ C- 1)
e

+ gfl )b

Constraints : IT T×= eit De
=

1 ⇒ D. e=omod2

+

where ¥ eij  

=en++ghDee. gh
+eFtxh0e5'

. Iq
can be flipped to -0 since EE- e

= D. e lattice divergence Pork
"

tftg =
eitffa.de' "

Electric Field = DW

Forms closed ( oops



# Phase diagram of the Ising Gauge Theory

• Confined Phase
. GKI : For

g=o ,
H= - JIT×

cij ,
ij

=) T×= I on all links
, Satisfies constraint

.

This corresponds to e= 0 everywhere .

.
For g small

,
there will be some links with non . zero electric

fields .

To satisfy the constraints
,

the field lines have to form
closed loops . For small

g ,
we expect these loops to be small and

dilute . As we increase g ,
these loops Proliferate = condense

.

• Confinement of test changes : electric lines are confined
for GKI .

To see this
,

insert two
"

test changes
" at

sites i and it P
,

and ask how much energy it costs to

pull these charges

apart
.

i•nm•itl Changes : ¥ Tijx = -
1

( odd number of TE - 1 emanate from
this site and have to connect to the other

test change )

Each T×= - l links costs energy 2J : pick shortest path :

DEH ) = ZJP ( → a as f→a : charges
are confined

)
a. In this phase

,

the electric field is well defined to )

while the magnetic field fluctuates widely .

.
Remark : It's important to perform this diagnosis in

a pure

gauge theory ( without matter
,

additional changes )
-



• Deconfined Phase g >> I
,

H = - GJ Tgtttttttt

CI: IDT Titg .  = + I for all D

( Gappedlexcitat.fi Filip a given pkqueke to t.TT?  - i

energy
cost :D= ZGJ .

To create such an excitation
,

we  actually
( gap )

need to flip flips along a

"

string
"

1 1 } I { I } . .  . .

�1�
= Ttt

mm
D D

' ' ' '

mm . Apply T×on - links
1 BE ' ' l l

.
This excitation comes with

I I I 1
a string attached

.

GS waveefunction : Let 's first work in the
"

B
"

= TZ basis
.

Naively : 14
. > = ¥0,

IT
,?y= + I > but not Gauge invariant !

Gi=fTT×
: T£→ - Tt

on t
=) IGS > = IT ( Itzel 14

.
> now Gi IGS ) = Gi

T
projector onto G.  = +1

and HIGS ) = EOIGS ) since [ H
,

Eif = o

H 14
. > = Eo 14.7



.

De confinement of test changes .

.

insert two test charges
Eo ,

Eitlx

los
'

> = ( l - Ge ) ( l - Gettel ( HG

e- a- ¥I¥⇐÷" '

HIGS '

) = Eo 165 ) ⇒ DEH ) =o in this limit !

Charges are deconfined

( dele )¥
,
;)

In
"

E "=T× basis : 1t2=+i > = k⇐tl=t× , >
2

= @-• +  a .

R=tl e=o

Up to normalization : IGS > = I |E ) String
( on simply connected ) loops

manifold configuration E Condensate

. IIT,j? IGS > = IGS ) as Itt creates a loop D

. dewnfined phase : strings are

"

cheap
"

and fluctuating .

# Topological Order

et 's consider the deewnfined phase .

Excitation = gapped magnetic flux excitation =

"

vison
"

carries 21L flux of - ( = IT - flux
as explained above

,
these excitations come with a String



1

If
I {

ik
. Acting with T× along

the string ( red links )
creates two visions ( - I 2h

I I I 1 1 fluxes)
run

1 BfI I I
.

The string is not measurable

by any
local measurement

.

1 1 1 1 1 all the plaqueftes along the string
have no fluxes , By = +1 .

Topological 65 degeneracy . K= # non contnatible paths

ftp.t.fi/k=i?.sgdsenmyP=of
: Consider a cylinder and

g-
a limit ( for now )

.

e- -

#
X = IT T×

: creates visas at

•- E to

- inserts T flux through
the

"

hole "

of the cylinderdiffidentz . # tz :
takes electric huge¥ E

'

around the cylinder.
X gauge invariant operators





A No local operator can tell the difference between ( GS ) and IGS 's
,

The flux can only be measured by taking an electric change all

around the cylinder .

@ Tonic Code

In the Zz gauge theory
,

the physical objects are electric
(oops ( strings)

,
and the Hilbert space doesn't really have a tension

product structure because of the gauge constraint . Can wee have
this structure emerge in a physical spin model ?

=) implement constraint
"

dynamically
" ( high energy cost for

violating it )

Htc= -

Jm§B
,

- Je§A± ( Kitaev )

with B. =

, #ItA+=if+Tti×
= P

ftp.P.IE;;
'¥n¥eHam=s

no constraint in this model

( but Je → a enforces previous gauge )
constraint

Exact solution : sum of commuting terms : [ As,B ]=o
s p

[ As
,

As .to
FS.si

, p . P
'

[ Bp
,

Bpr]=°
GS : As . +1 Bp = t 1 ( As=tl emerges dynamically ! 1



Bp= - 1 : Vortex (magnetic ) excitation

BPIGS )= + IGS > tp ⇒ IGS ) = [
htzy

GTYKTY >

st
. ftp.t.tl V. D

IED ( no flux )

⇒ GS = superposition of vortex
- free configurations

Now think of TE
 ⇐ I as link II II.

. D '

II ,

ASIGS ) = IGS > its
allowed

"

. On infinite plane
, Cgpzg = +1 up to normalization

( as the As generate any configuration from HTETII ) )

.
On Tones : sometimes

called

Watts )= IT tt (
"

Wilson
"

~_
E IEE loops )

(
"

I
q Any As will intersect 0 on 2

/
, edges of these loops . Htc cannot

E.
z connect States with different values

08 We
, , Wez

⇒ 4 degenerate GS : (we
,

, We
,
)=( It ± 1)

Excitations : we flavours : electricchanges and magnetic vortices

t
A term B term



me
Electric path operator : W{

"

= fete Tit

5
, qz

sit
sisz

connect 2 stars

Clearly [ Wcel
,

Bp ] = o tp ,
and also commutes

with almost all A
, except As

,
, As

,
( share only I

( anti
. commutes)

link )
.

•

gnesenf
" Has

.
> = wet '

loss
5,52

eigenstate with
energy GJE .a-

9 Creates a pain of electric
charges at S

,
and Sz

e charge : energy cost  
= ZJE

Magnetic path operator : KEm= il.IE Ti
× connects two

RR pp.
plaquettes ,

§ = path on dual
lattice

Commutes with all A+ ,
and

-
pz almost all Bp

,
antiwmmutes

with Bp
,

Bp
,p.nl GR lypp

.

> =

Weh

'
Ics >

Energy = GJM
" "

Creates a pain of magnetic vortices at R
, Pc

m flux : energy cost
=

ZJM

Note .
. There's no phase transition in Hte

( Commuting projector Hamiltonian )



Anyonic Statistics and Emergent Fermions :

Exchange identical particles
, focus  on statistical phase :

e a

^ ^

a•€e# µ = Rae
in
pdnisthiiseyisaeeeke

a f

Do this twice :

@ ⇒ Entire .ae In?t¥teI! .

nothing → identity

in 3d -1 exchange can
lead to ± I eigenvakes

( fermions in bosons )

in Zd : Braid
group more complicated → Anyons .

Tricycle : ( (early ,
e and m are bosons since path

operators of the same path commute with each
other

.

we write :

eke = !! and # = !!
However

,
they have some non -

trivial mutual statistics :

¥m = - |] Mutual statistics of it



To see this
,

let's consider lp
,

> a state with

magnetic vortex at of
"

Braiding operation
"

: Take e charge around m : E
1

IP
,

) → fete Tit IP
, > @t contour surrounding P

,
.

'
'

.

.

÷^

Now : string

µT±) ietetit ' Is .
Bp

e

(
"

Stokes ' theorem !
"

)
E g{w=f:

and Bp
,

IP
,
> = - IR ) .

So ( p
, ) → - IR ) under the } braiding operation

.

ETTZ isn't trivial if C encloses a magnetic vortex !

=) this means that E= exm is a feima :

^L composite particle

¥¥
.

.IE#yHIti.

fumion !



Nite : The 65 degeneracy can also be understood in

terms of this non trivial nmutual statistics
.

( create ee pain and wrap of of them around a cycle of the
tonus to annihilate them again ,

and same thing for mm

around the other cycle : those operations anticoommute ) .

€212 Gauge theory with
"

matter fields
"

" "

Tij
: gauge fields ,

live on links

0
,

. : Ising matter field ,s
,

live on sites
.

( vertex )

H= - g?gTij×- g-
'

§ttpttttt} Krone
gauge
theory

- it?0i×- dEggoittijtojt} Ising
Model

minimally
coupled to

0 gauge field
"

a

Gauge symmetry : 0
,

.

×

IT T
×

=)

ITT
×

= g.
×

jn .n
. ,

. ij

oit→ siqt jet
,

it

Tjt -s sitjtg .

site
it

( D. e=e )
O = 21

,
electric change

if g ⇒ o
,

H = - g
"

ILBD - A"§A+ since A # of

×→°

= Htc



sdueyd by T.jo?=FittyI
F±±i

. g=o ,
Xto : pure matter theory : B ,]=tl ,

YD

( no flux condition)

Under Gauge fixing : T ,j?=tl on all links

Ho
. ,= .

= - d
' '

? q× - d ¥ ,
otojt has a

symmetry "

breaking transition as a function of d
.

X large : Higgs
phase

=) conventional symmetry breaking transition upon gauge fixing .

K give dynamics to e changes.

At the Higgs transition
,

e particles condense ( Ot
"

gets expectation value
"

)
↳ e creation operator

leads to confinement of on ( general Topological QFT result

e. m have non tr
statistics

iuial mutual )

.
X=o

, gto : pure gauge theory

electric changes now cost A energy .⇒ constraint #T×=+l
On each star f-

H= Hz
, gauge theory -

As
g increases : confinement of e particles

×
"

a
M particles Condense

th
Higgs

,

a charge condensate
f§ vorticesconfined

,¥I Dewnifined
, page ( uonpex condensate

£
Zz Top . Ondy Charges confined

o• > g
Tonic Code Pure gauge Theory



Higgs Phase and
"

Spontaneous Gauge Symmetry Breaking
"

•

"

Xiao - Gang Wea "

argument : gauge

"

symmetriesaren't actual symmetries
"

do
. nothing

" transformation .
Two States related by gaugetransformation

are actually the same state
.

Can't be spontaneously
broken

.

• Elitzun 's theorem : Gauge symmetries can't be spontaneously
broken

.

Intuitively : In a Zd classical Ising model
, going from all T to

all t

requires a domain wall with extensive
energy

cost
.

In Id :

no extensive energy cost
, entropy Wins ⇒ no FM phase in

classical Id Ising model
→ Same argument breaks down for local gauge symmetries :

different GS would be connected by local gauge transformer
- tins at no energy cost !

So what's going on in the Higgs phase ?

H= - d
"

?q× - data oittijtojt
with B

a
= Tttttt tt.tl ( focus on g→o )

. Gauge fixing : TEI
,

then looks like spontaneous symmetry breaking?

.

Solution : Tijt= Oitojt as d→a ( satisfies BD=tl ,
V. D)

g→o

The true eigeasfates of H can be obtained from :

Hgp =
- d

"

? oix - 11¥
,

oitogt
[ gauge fixed Hamiltonian



by Symmefnizing to make them
gauge invariant

.

|Yn)=§Gl4n)g.g
.

G = gauge transformations

In particular,
the two ferromagnetic grounstate, of Hg .p

.

Hot.tl
,

Tttil ) and / }oE . l
,

TEHI )
are related by gauge transformations

.

⇒ the Higgs mechanism looks like SSB for a particular choice

of gauge ,
but the true GS is unique and gauge - invariant

# Detecting Topological Order using Entanglement.

How can one detect dewnifinemeat experimentally on even

numerically ?

→ degeneracy on torus with no broken symmetry Arden
→ Braiding properties of anyonic excitations

.

Say we have the wave function 14 ) that is the 6.5 . of atopologicallyordered H .

No tonus
,

no excitation : how do we tell that
it is topologically non . trivial ?

→ Entanglement Entropy
A At

Sa=- tea kgea eA= trap with f. HKH

reduced density matrix

Example : two qeits : (4) = Itt > =) e= HYKTTI
AB AB

eat HakHa= (b ;) sa=o not entangled
product state



lys =ht¥ts ⇒ e=t ( Htktutlttkttltlttkttl

tktkttl )
pa= { ( HKM + KKH ) = ( to°{ ) Mixed state !

SA = - F R. log p..

= log 2 with FR .  = I

Properties :

-
For a pure state : SA -

- SB
- strong soeadditiuitl :

gats , 3 SAUB + SAUB

Many . Body system : SA I NA log 2 NA - L of = # spins

for spins { in Zd
.

"
volume law

"

"
2

in A

. Gapped ground states : SA ~ Lad
"

area law

. CFT in ltld : SA = § log LA violates ( mildly ) area . law

.
Low entanglement in quantum 65 : tensor networks and matrix

product state techniques .
DMRG etc

.

Entanglement in Tonic code : San x[ A
- ✓

[ universal
,

= log 2

for ZG top . order

Hk ) = [ |°§ ) A : compact simply connected .

electric eigen values of pa can be ( abbded
tops by eleckix ( T× ) configurations at the

boundary .

Loops that do not cross the boundary
do not contribute to SA



Naively 2↳ possibilities for TI
. # I at boundary .

all equipnobalte in 14 > .

However : Non local constraint from (emergent ) Gauss law
:

number of electric line crossing boundary is Even
.

=\ N=2↳ "

possible configurations ( last e line fixed )
Gauss law gives us

"

one bit
"

of

information .

Pi  = YN non universal
, are . . law

sA= - i¥ P; logp;
= log N ,Laloylz -l.@

P " "

8. log2his is a universal property of 21
, topologically ordered States

# U( 1) Gauge Theories (Very brief )

Example of lattice U ( c ) gauge theory in Ztld :

Compact QED

Consider : Ztld system ,
notions Op=Opt 2T defined on links

[ Op, one,
]=i Spp , np = conjugate variable

= integer
O E [ 0,2T )

,
n =

"

angular momentum
"

if O = coordinate ob

e-
in "£n^eimo

, ppm

Particle on a ring



Gauss.
law

: Gs = § +
np

= °

Gauge invariant H : [ H
,

Gs ]=o

H = x § np wouldn't have a bounded spectrum from below

→ { KE Tgnpl : leading electric term
.

.
Since 0 is angle

,
consider operator ei9 → not

gaugeinvariant
4 3 i (Qz - 023 t On

,
-0,4 )

p e
- ) gauge

I 2

invariant
object .

To get rid of these signs ,
let's orient the lattice

An%
^

VB
< • s • < •

As
a <

Draw arrow from A. → B
.

✓ r ✓
^

B A B A
s • e • s • < • s eij

 = Einij
^ V a

✓Fog>
•

;e.ua
,

;B<
aij = g. Qj .

Ei={It iitenb

Gauge constraint : D
. e = o ( Gauss law )

all → charges would be quantizedtoo
. Compact QED

Gauge group = U( 1)

→

Gauge invariant object : ei (
Them

)
. nz Magnetic flux

trough plaqudte
↳ = ant distant ah



H=K€ Fei -

, Fasb .

. KE DKB .

ep= o electric lines costly ,
confined phase

[ satisfies constraint

. KBDKE . favors GD small ( mod Zit )

→ cos l
,

al - both
He k¥§ee2 + K¥5 Git ... → Nsud QEA

gapless photons

Similar construction in any dimension
.

BUI : in Ztld
,

funneling between minima of cos b
,]

crucial !
+ monopoles (Conduct QED )

( Polyakov) → confined phase only
→ photon gets a mass


