PHY-817: Advanced Statistical Physics, UMass Amherst, Problem Set #2

Romain Vasseur

Due: Friday, Feb 28 by 5pm.

I. GAUSSIAN INTEGRALS AND WICK'S THEOREM

Consider n real variables ϕ_a drawn from a Gaussian ensemble such that

$$\langle \mathcal{O}(\vec{\phi}) \rangle = \frac{1}{Z} \int \prod_{i=1}^{n} d\phi_a \mathcal{O}(\vec{\phi}) \mathrm{e}^{-\frac{1}{2}\vec{\phi}^T M \vec{\phi}},$$

with M a real symmetric matrix.

- 1. Compute the normalization factor Z defined by $\langle 1 \rangle = 1$.
- 2. Show that $\langle e^{\sum_a \gamma_a \phi_a} \rangle = e^{\frac{1}{2} \sum_{a,b} \gamma_a \gamma_b (M^{-1})_{ab}}$
- 3. By Taylor expanding (or differentiating) both sides, compute $\langle \phi_a \rangle$, $\langle \phi_a \phi_b \rangle$, $\langle \phi_a \phi_b \phi_c \rangle$ and $\langle \phi_a \phi_b \phi_c \phi_d \rangle$.

II. MULTICRITICAL POINT AND FLUCTUATIONS

Consider a system with order parameter m and symmetry $m \to -m$. We are interested in multicritical points where the Landau expansion of the free energy takes the form

$$F = \int d^d x \left(\frac{K}{2} (\nabla m)^2 + a_0 (T - T_c) m^2 + b m^{2n} \right),$$

with $T = T_c$ at the multicritical point. Here, $n \ge 2$ is an integer and $a_0, K, b > 0$.

- 1. Imagine tuning the temperature T across the multicritical point. What is the (mean-field) magnetization exponent β as a function of n?
- 2. Substitute this back into the free energy to compute the specific heat critical exponent α .
- 3. Compare this with the contribution to the free energy from the Gaussian fluctuations around the saddle point (mean-field) solution. Show that the mean field contribution to the free energy dominates at the critical point provided $d > d_c$ where you will determine the upper-critical dimension d_c as a function of n.

III. SUPERFLUID HE⁴-HE³ MIXTURES

The superfluid He⁴ order parameter is a complex number $\psi(\mathbf{x})$, where $\langle |\psi|^2 \rangle \neq 0$ indicates a superfluid phase. In the presence of a concentration $\phi(x)$ of He³ impurities, the system has the following Landau-Ginzburg energy

$$\beta \mathcal{H}[\psi,\phi] = \int d^d x \left(\frac{K}{2} |\nabla \psi|^2 + t |\psi|^2 + u |\psi|^4 + v |\psi|^6 + \frac{\phi^2}{2\sigma^2} - \gamma \phi |\psi|^2 \right),$$

with K, u and v positive.

1. Integrate out the He³ concentrations to find the effective Hamiltonian $\mathcal{H}_{eff}[\psi]$ for the superfluid order parameter, given by

$$Z = \int \mathcal{D}\psi \, \mathrm{e}^{-\beta \mathcal{H}_{\mathrm{eff}}[\psi]} = \int \mathcal{D}\psi \mathcal{D}\phi \, \mathrm{e}^{-\beta \mathcal{H}[\psi,\phi]}$$

2. Obtain the phase diagram for $\beta \mathcal{H}_{\text{eff}}[\psi]$ using a saddle point approximation. Show that there is a line of second order transitions which joins a line of first order transitions at a special point, called a tricritical point (see problem II).