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The second order phase transition separating paramagnetic (disordered) and ferromagnetic (ordered) phases in
the Ising model – and in all uniaxial magnets – can be captured by the effective, coarse-grained, Landau-Ginzburg
φ4-theory
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where φ is the order parameter for the transition (with a Z2: φ→ −φ symmetry), and u, t are dimensionless couplings,
with u > 0 and t driving the transition. The partition function

Z =

∫
Dφ e−S[φ], (2)

can’t be evaluated analytically, but a first attempt is to use a saddle-point approximation δS/δφ = 0. This corresponds
to a mean-field approximation that neglects fluctuations, and provides a very simple physical picture of spontaneous
symmetry breaking in terms of minimizing the potential V (φ) = t

a2φ
2 + u

a4−dφ
4 + . . . This predicts a 2nd order phase

transition at t = 0, with spontaneous symmetry breaking for t < 0, with critical exponents α = 0, β = 1/2, γ = 1,
δ = 3. Fluctuations are captured by the two-point function G(r) = 〈φ(r)φ(0)〉 − 〈φ〉2, which within this mean-field
approximation satisfies

(−∇2 + ξ−2)G = δ, (3)

where ξ ∼ t−1/2 is the correlation length, which diverges at the transition with the mean-field exponent ν = 1/2. This
equation can be solved by Fourier transform, and G(r) decays exponentially as ∼ e−r/ξ off-criticality, while exactly
at the critical point t = 0, we have

G(r) ∼ 1

rd−2
, (4)

corresponding to η = 0.
The saddle-point (mean-field) approximation is ignoring fluctuations. When d > 4 (upper critical dimension),

the contributions from Gaussian fluctuations about the saddle point to the free energy are subleading (Ginzburg
criterion), so that mean-field exponents are exact. On the other hand, if d < 4, fluctuations are crucial and invalidate
the mean-field predictions. (Note that other universality classes might have different upper-critical dimensions.) If
the dimension of the physical system is too small, less than the lower critical dimension, fluctuations can even destroy
the long-range ordered phase: for systems with discrete symmetries, the lower-critical is d = 1 (in agreement with
the absence of transition in the 1d Ising model), while for systems with continuous symmetries, the lower-critical
dimension is d = 2 (Mermin-Wagner theorem: the Goldstone modes of the putative ordered phase have diverging
fluctuations and destroy order).

To deal with these fluctuations more seriously, we use the Renormalization Group (RG). The general idea is to
coarse grain by integrating out microscopic degrees of freedom, as in the block spin approach. The partition function
is unchanged by this transformation. Schematically, we have

Z =

∫
Dφ e−S[φ] =

∫
Dφ′ e−S

′[φ′], (5)

where S′ is the effective action for the remaining degrees of freedom φ′. During an RG step, the level spacing (UV
cutoff) increases a → a′ = ba with b > 1. The couplings of the theory “flow” under RG K ′i = fi({Kj}), and
fixed points {K?

j } of these RG equations correspond to stable phases and critical points. The stability of a given
fixed point can be analyzed by diagonalizing the matrix ∂K ′i/∂Kj evaluated at the fixed point. The eigenvalues
λi = byi determine whether the corresponding scaling variables gi = Ki − K?

i are relevant (yi > 0, grow under
RG), irrelevant (yi < 0), or marginal (yi = 0). The RG framework naturally explains the notion of universality, as
different microscopic models can have a transition controlled by the same RG fixed point. It also naturally provides
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an expression for critical exponents in terms of the RG eigenvalues yi by exploiting the invariance of the partition
function and of the dimensionfull correlation length under RG. For example, the (singular part of the) free energy
density obeys

f(g1, g2, g3, . . . ) = b−ndf(bny1g1, b
ny2g2, b

ny3g3, . . . ) (6)

Let us assume that, say y1 and y2 are positive (relevant perturbations, say g1 = t/t0 + . . . , thermal perturbation being
symmetry-even, and g2 = h/h0 + . . . field perturbation, odd under symmetry in the case of Ising), while all the other
perturbations are irrelevant. We run the RG until bny1g1 ∼ 1. This yields

f(g1, g2, g3, . . . ) = g
d/y1
1 Φ(g

−y2/y1
1 g2, g

|y3|/y1
1 g3, . . . ) (7)

Near the transition g1 → 0, irrelevant variables give vanishing contributions g
|y3|/y1
1 g3 → 0 and only provide corrections

to scaling (assuming this limit is smooth in the function Φ; if that’s not the case, those variables are called dangerously
irrelevant). Meanwhile, relevant variables give a universal, scaling form for the free energy

f(t, h) =

(
t

t0

)d/yt
Φ

(
h/h0

(t/t0)yh/yt

)
. (8)

The critical exponents α, β, γ, δ all follow from this scaling form, and can be expressed only in terms of the two
relevant eigenvalues yt and yh. Applying a similar reasoning to the correlation length, we find ν = 1/yt. More

generally, for any relevant variable gi, there’s a diverging correlation length ξ ∼ g−1/yi
i as gi → 0 near the transition.

This RG framework also naturally incorporates finite size effects: if N is the linear size of the system, N−1 is a
relevant variable with RG eigenvalue yN−1 = 1. Relevant couplings gi correspond to scaling operators (or fields) φi
(not to be confused with the notation φ in the φ4 theory!). At criticality, those fields satisfy φi(r) = b−∆iφi(r/b),
where ∆i = d− yi is their scaling dimension. Their two point functions read

〈φi(r)φi(0)〉 ∼ 1

r2∆i
. (9)

While block spin implementations of the RG are physically nice and transparent, they are quite cumbersome and
uncontrolled in practice. Instead, we consider a real-space perturbative RG expansion near a given fixed point action

S = S?0 +
∑
i

gi

∫
ddx

ad−∆i
φi(x), (10)

corresponding to a fixed point S?0 weakly perturbed by its scaling fields φi(x), with dimensionless couplings gi � 1.
Within this perturbative regime, we can expand the partition function within perturbation theory, and upon rescaling
a→ ba with b = eδ` ' 1 + δ` while keeping the system size unchanged, we find that the couplings have to be modified
in the following way to leave the partition function unchanged:

dgk
d`
≡ lim
δ`→0

g′k − gk
δ`

= ykgk −
Sd
2

∑
ij

Ckijgigj +O(g3), (11)

where Sd is the area of the unit sphere in d dimensions. Here, yk = d − ∆k are the RG eigenvalues of the scaling
fields φk, and Cijk are the operator product expansion (OPE) coefficients of those operators, which characterize how
the scaling operators can be expanded onto the basis of scaling fields when brought close together. More precisely,
we have

φi(x)φj(y) '
∑
k

Cijk
|x− y|∆i+∆j−∆k

φk

(
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2

)
+ . . . (12)

where this identity holds when inserted into an arbitrary correlation function of the fixed point action S?0 , as x→ y.
For our case of the φ4 theory, the “trivial” fixed point is the Gaussian theory

S =

∫
ddx

1

2
(∇φ)2. (13)
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The scaling dimension of the field φ is ∆φ = 2−d
2 , and follows from naive dimensional analysis (power counting). The

scaling dimensions of φ2 and φ4 follow immediately, and to leading order, we have

dt

d`
= 2t+ . . . (14)

du

d`
= (4− d)u+ . . . (15)

The Gaussian fixed point corresponds to u = t = 0. For d > 4, u is irrelevant and yt = 2 (ν = 1/2) drives the
transition. This could suggest that the transition in the Ising model for d > 4 is simply given by this Gaussian theory,
perturbed by t

∫
ddxφ2. However, this is not correct: the scaling dimension of φ implies yh = d

2 + 1, which leads to
critical exponents that coincide with mean-field theory only for d = 4. This is because u is dangerously irrelevant for
d > 4, and it can’t be ignored and sent to zero naively. One way to see this is that u > 0 is needed to obtained a
well-defined ordered phase 〈φ〉 ∼ (−t/u)1/2 within mean-field from t < 0.

For d < 4, u is relevant so the transition is described by a different fixed point, called Wilson-Fisher (WF) fixed
point. We say that the Gaussian fixed point flows to the WF fixed point in the infrared (IR: long wavelengths, low
energy) when perturbed by the φ4 term. We can access this fixed point perturbatively in ε = d−4, so that u is barely
relevant, and the WF is “close” (in parameter space) to the Gaussian fixed point. We need the OPE structure of the
Gaussian to use the equations (11). We have

〈φ(x)φ(y)〉0 =
1

|x− y|d−2
, (16)

up to some normalization that we absorb in the definition of the field φ. Higher-point correlation functions can be
computed using Wick theorem. It is convenient to work with normal ordered operators/fields : φn :, which are defined
so that Wick theorem applies with no Wick contractions are coinciding points. For example, we have

〈: φ2 : (x) : φ2 : (y)〉0 = 2〈φ(x)φ(y)〉20 =
2

|x− y|2(d−2)
, (17)

with : φ2 := φ2 − 〈φ2〉0. Now the OPE structure of those operators follows from Wick theorem:

: φ2 : (x) : φ2 : (y) ' 2

|x− y|2(d−2)
+

4

|x− y|d−2
: φ2 :
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2

)
+ : φ4 :

(
x+ y

2

)
+ . . . (18)

This identity is valid when inserted in correlation functions of the Gaussian theory as x → y, with the first term
corresponding to Wick contracting all operators in : φ2 : (x) : φ2 : (y); the second term corresponds to Wick
contracting two of those operators, leaving a term that looks like : φ2 : from far away. The last term corresponds to
all operators in : φ2 : (x) : φ2 : (y) being Wick contracted with other operators and not together, so that they look
like : φ4 :.
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