Newtonian Mechanics

System of particles S, isolated from the rest of the would.

Mechanics desuibes the evolution of S as a function of time: dynamics of the motion of the particles.
State \hat{S} of the system: $\hat{S}(F)=\left\{\pi_{i}(t), v_{i}(t)\right\}$
where $\vec{v}_{i}=\frac{d \vec{n}_{i}}{d f} \equiv \dot{\vec{r}}_{i}$
(I) Newton's laws

It law: A body remains at nest on in uniboum motion unless acted upon by a ponce.
\Rightarrow if $\sum_{j} \overrightarrow{F_{i j}}=\overrightarrow{0}$ with $\overrightarrow{F_{i j}}$ ponce exerted e_{y} particle dion particle is then the it particle has acceleration $=0$: uniformmation on rest
$2^{\text {nd }}$ law $:$

$$
\begin{aligned}
& m_{i} \ddot{\vec{\pi}}_{i}=\sum_{j} \vec{F}_{i j}^{\prime} \quad \vec{F}_{i j}=\overrightarrow{F_{j}} \\
& =E_{\text {quations positive number: inertial mass }} \\
& \ddot{\pi}_{i} \Rightarrow m \overrightarrow{a_{i}}=\vec{F}_{i}=\sum_{j=1}^{N} \overrightarrow{F_{i j}}
\end{aligned}
$$

N particles
$3^{\text {nd }}$ law: If two bodies exert faces on each other, these bores are equal in magnitude and opposite in direction.

$$
\overrightarrow{F_{i j}}=-\vec{F}_{j i}^{\prime}
$$

ex:

Consequence: $\sum_{i} m_{i} \ddot{\pi}_{i}=\sum_{i, j} \overrightarrow{F_{i j}}=\overrightarrow{0}$

$$
\vec{N}=-m \vec{g}
$$

total
$\Rightarrow \frac{d}{d f}\left(\sum_{i} m_{i} \vec{v}_{i}\right)=\overrightarrow{0}: \quad \begin{gathered}\text { linear momentum } \\ \text { conserved }\end{gathered}$
$\overrightarrow{P_{i}}=m_{i} \vec{v}_{i}$ momentum of particle i

* These laws are approximate, they break down when:
- Bon velocities near the speed of light (rus special relativity)
- For atomic and subatomic systems (\sim quantum mechanics)
- WRen gravity is strong (Ms general relativity)
* In the following, we will assume that:
- Newton's equations Roll!
- $\overrightarrow{F_{i j}}=F\left(\overrightarrow{r_{i}}, \overrightarrow{\pi_{j}}\right):$ function of $\overrightarrow{\pi_{i}}, \overrightarrow{r_{j}}$ only
- Conservative Forces:

$$
\overrightarrow{F_{i j}}=-\frac{\partial}{\partial \vec{\pi}_{i}} \cup\left(\overrightarrow{\pi_{i}}, \overrightarrow{\pi_{j}}\right)
$$

in principle, can also depend
on i, j

- Finally, we will require that the infraction potential depends only on distance:

$$
\therefore \lambda_{i j}=\left(\overrightarrow{\pi_{i}}-\vec{\pi}_{j} \cdot \mid \quad U\left(\overrightarrow{n_{i}}, \overrightarrow{n_{j}}\right)=U\left(\overrightarrow{n_{j}}, \overrightarrow{n_{i}}\right) \equiv U\left(\pi_{i j}\right)\right.
$$

oj $-\cdots s$ cental forces
This implies: $\overrightarrow{F_{i j}}=-\frac{\partial}{\partial \vec{n}_{i}^{\prime}} U\left(\left(\vec{n}_{i}-\overrightarrow{n_{j}} \cdot \vec{\prime}\right)=-\frac{\partial \mid \overrightarrow{n_{i}}-\overrightarrow{n_{j}}}{\partial \vec{n}_{i}^{-}} U^{\prime}\left(n_{i j}\right)\right.$

$$
\begin{aligned}
& =-\frac{\partial \sqrt{\left(n_{i}^{-}-\overrightarrow{n_{j}}\right)^{2}}}{\partial \overrightarrow{n_{i}}} U^{\prime}\left(n_{i j}\right) \\
& =-\frac{1}{2\left|\overrightarrow{n_{i}}-\overrightarrow{n_{j}}\right|} 2\left(\overrightarrow{n_{i}}-\overrightarrow{n_{j}}\right) U^{\prime}\left(n_{i j}\right)
\end{aligned}
$$

Let: $\varphi(r)=-\frac{1}{\lambda} \frac{d U}{d r} \Rightarrow \overrightarrow{F_{i j}}=\left(\overrightarrow{\eta_{i}}-\overrightarrow{\pi_{j}}\right) \varphi\left(\pi_{i j}\right)$ Note: $\overrightarrow{F_{i j}}=-\overrightarrow{F_{j i}}\left(3^{n t} l_{-w}!\right)$ and $\overrightarrow{F_{i j}}$ parallel to $\overrightarrow{r_{i}}-\overrightarrow{\pi_{j}}$

Inertial frame: Motion measuned with respect to deference frame.
Inertial frame: Frame in which Newton's laws are valid. pixed"stans blame

Galilean invariance: if Newton's law are valid in one refl. - neace Brame, then they are also. valid in any neberence frame in unibum motion (not accelerated) with respect to the finst one.

Follows from: m : $\ddot{\overrightarrow{x_{i}}}=\vec{F} . \quad$ Galileo Boost (Bl)

$$
\vec{x}^{\prime \prime}=\vec{x}^{\prime}+\vec{v}_{0} t \quad m_{i} \ddot{\vec{x}}_{i}^{\prime}=\vec{F}_{i}+R_{0}+\text { fanions (3) }
$$

(II) Conservation theorems $\begin{aligned} & t t^{\prime}=t+c \text { (I) } \\ & =G_{\text {galilean Group }}\end{aligned}$

Momentum: Remind: $3^{\text {Nd }}$ law: $\vec{F}_{12}=-\overrightarrow{F_{21}}$

$$
m_{1} \frac{d \vec{v}_{1}}{d t}=-m_{2} \frac{d \vec{v}_{2}}{d t} \Rightarrow \frac{d}{d r}(\underbrace{m_{1} \overrightarrow{v_{1}}+m_{2} \overrightarrow{v_{2}}}_{m_{\text {omention }} \text { : wnservad! }})=0
$$

If $\vec{F}=0, \vec{p}$ is a constant of motion.

- If $\vec{F} \cdot \vec{a}=0$ for a given constant vector \vec{a}
then $\quad \frac{d \vec{p}^{\prime}}{d t} \cdot \vec{a}=\frac{d\left(\vec{p}^{\prime} \cdot \vec{a}\right)}{d t}=0 \Rightarrow \vec{p} \cdot \vec{a}$ conserved
Ex: Particle in magnetic field ${ }^{d t} \vec{B}: \quad \vec{F}=q \vec{v} \times \vec{B}$

$$
\vec{F} \cdot \vec{B}=0 \text { since } \vec{F} \perp \vec{B}
$$

$\Rightarrow \quad \vec{\rho} \cdot \vec{B}$ conserved! $m v_{z}$ along $\vec{B}=B \vec{e}_{z}$ constant.
Angular Momentum: $\quad \vec{\rho}=\vec{r} \times \vec{\rho}$
with respect to origin
Gram which \vec{r} is. measured. $\quad \vec{V}=\dot{\vec{r}}$
$\begin{array}{ll}\|\vec{\rho}\|=\pi v \sin \theta & \vec{\rho}=0 \text { if } \vec{\Omega}, \\ b_{y} \text { definition } \vec{\rho} \text { is } \perp \text { ts } \vec{\pi} \text { and } \vec{\rho}\end{array}$ // $\vec{v} \quad \rho=m \vec{v}$
. Let's also introduce the TORQUE (moment of force)

$$
\vec{T}=\vec{\pi} \times \vec{F}
$$

Now:

$$
\begin{aligned}
\frac{d \vec{\rho}}{d t}=\underbrace{\frac{d \vec{r}}{d t} \times \vec{\rho}}+\vec{r} \times \frac{d \vec{\rho}}{d t} & \left.=\vec{r} \times \frac{d \vec{p}}{d \vec{p}}\right) 2^{n d} l a \\
\vec{v} \times \vec{\rho}=m \vec{v} \times \vec{v}=0 \quad & \vec{r} \times \vec{F} \\
& =\vec{T}
\end{aligned}
$$

$$
\Rightarrow \quad \frac{d \vec{\rho}}{d t}=\vec{T}
$$

The angular momentum of a particle subject to notonque is consewed.
Er: Centinal Force:

$$
\begin{array}{ll}
\vec{F} & \vec{F}=-F \overrightarrow{e_{n}} \Rightarrow \vec{T}=\overrightarrow{0} \\
\overrightarrow{e_{n}}=\frac{\vec{n}}{\|\vec{n}\|}
\end{array}
$$

Enagy: Def: Work: $W_{l \rightarrow 2}=\int_{1}^{2} d \vec{r} \cdot \vec{F}$
Line integnal following path from 1 to 2.

$$
\begin{aligned}
& m \frac{d \vec{v}}{d t}=\vec{F} \Rightarrow m \frac{d \vec{v}}{d t} \cdot d \vec{r}=\vec{F} \cdot d \vec{r} \\
& \Rightarrow W_{1 \rightarrow 2}=\int_{1}^{2} \vec{F} \cdot d \vec{A}=\int_{1}^{2} m \frac{d \vec{v}}{d t} \frac{d \vec{r}}{d t} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{t_{1}}^{t_{2}} m \vec{v} \cdot \frac{d \vec{v}}{d t} d t=\int_{t_{1}}^{t_{2}} m \frac{d}{d t}\left(\frac{\vec{v} \cdot \vec{v}}{2}\right) d t \\
& =\int_{t_{1}}^{t_{2}} \frac{d}{d t}\left(\frac{1}{2} m v^{2}\right) d r=\int_{1}^{2} d\left(\frac{1}{2} m v^{2}\right) \\
& =T_{2}-T_{1} \quad \text { where } \quad T=\frac{1}{2} m v^{2} \text { Kinetic }
\end{aligned}
$$

So we have $\Delta T=T_{2}-T_{1}=W_{1 \rightarrow 2} \quad \begin{gathered}\text { Kinafic eneny } \\ \text { Fhenem }\end{gathered}$ theoren.
vaviation of Kinetic erengy betwien 1 and 2 given b_{y} the wonk of the forces exeerid onthe purtict.

Deb: Conseuvative Forco: Fance for wacie $W_{1 \rightarrow 2}=U_{1}-U_{2}$ indepenententy of the path chosen: $\vec{\nabla} \times \vec{F}=0$

$$
\begin{aligned}
& \vec{F}=-\vec{\nabla} u{ }^{2} \quad \nabla=\frac{\partial}{\partial \vec{\pi}^{\prime}} \\
& w_{1-12}=-\int_{1}^{2} \vec{\nabla} U \cdot d \vec{x}=-\int_{1}^{2} d u=U_{1}-U_{2}
\end{aligned}
$$

Note: U is defined up to an additice constant.
Assuming a consecvation force:

$$
\begin{aligned}
& d T=d\left(\frac{1}{2} m u^{2}\right)=\vec{F} \cdot d \vec{n} \Rightarrow \frac{d T}{d \vec{F}}=\vec{F} \cdot \vec{v}=-\vec{\nabla} u \cdot \dot{\vec{r}} \\
& \text { and } \frac{d U}{d r}=\sum_{i} \frac{\partial U}{\partial x_{i}} \frac{d x_{i}}{d t}+\frac{\partial U}{\partial t}=\vec{\nabla} u \cdot \dot{\vec{n}}+\frac{\partial u}{\partial t}
\end{aligned}
$$

(III) Conservative braces in Id

In Id, any force that depends on x only (not on time) is conservative:

$$
\begin{aligned}
& F(x) \Rightarrow \text { choose } U(x)=-\int_{x_{0}}^{x} F\left(x^{\prime}\right) d x^{\prime} \\
& \text { so } F=-U^{\prime}(x) \\
& m \frac{d v}{d t}=-U^{\prime}(x) \Rightarrow m v \frac{d u}{d t}=\frac{d}{d t}\left(\frac{1}{2} n v^{2}\right)=-\frac{d U}{d x} \frac{d x}{d f} \\
& \frac{1}{m}=-\frac{d U}{d t}
\end{aligned}
$$

$$
\frac{1}{2} m v^{2}+U=E \quad \text { energy conserved. }
$$

$\tau=$ cst fixed by initial conditions

- Separate variables: $\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}=E-U(x)$

$$
\Rightarrow \pm \int_{x_{0}}^{x(t)} \frac{d x^{\prime}}{\sqrt{\frac{2}{m}\left(E-U\left(x^{\prime}\right)\right)}}=\int_{t_{0}}^{t-} d t^{\prime}=t-t_{0}
$$

Ex: Harmonic oscillator, let's use energy conservation to solve that problem.

$$
\begin{aligned}
& \Rightarrow \frac{d}{d t}(T+U)=\frac{\partial U}{\partial t} \text { we also a conservative force, } \\
& \text { vt also equine } U \text { 㪂 } \\
& \text { nagy } \\
& \Rightarrow \frac{d}{d t}(T+U)=0 \\
& E=T+U \text { conseured } \\
& \text { Bor a conservative back }
\end{aligned}
$$

$$
\left.\begin{array}{rlrl}
F=-k x=-\frac{d}{d x}(\underbrace{\left.\frac{1}{2} k x^{2}\right)}_{U} & & x=0=\text { equilifiom } \\
\text { posinon }
\end{array}\right)
$$

Notê: $\sin ^{2}(\arccos x)+x^{2}=1 \Rightarrow 2(\arccos x) \sin (\arccos x) x+2 x=0$

$$
\Rightarrow a r \cos ^{x} x=-1 / \sin (\operatorname{anc} \cos x)=-1 / \sqrt{1-x^{2}}
$$

$$
\Rightarrow x(t)=x_{0} \cos \omega t \text { with } \omega=\sqrt{\frac{k}{m}}
$$

* Qualitative analysis:

- Since $E=T+U$ with $T>0$, motion can only Rappen bor E>U: between x_{1} and x_{2}, x_{3} and $x_{4} \ldots$
Af $x_{1}, x_{2} \ldots: T=0$ since $U=E:$ tuning points \checkmark vanishes.
- Mation befwcen x_{1} and x_{2} is periodic.

$$
\text { Period: } 2 \text { trigs between } x_{1}
$$ and x_{2}

Ex: Hamonic Oscillatons: $U(x)=\frac{1}{2} k x^{2} \quad x_{1}$ and x_{2} givan $l_{\text {, }}$

$$
\left.T=2 \int_{-\sqrt{2 E / \pi}}^{\sqrt{\frac{2 E}{k}}} \frac{E=\frac{1}{2} k x_{1,2}^{2} \Rightarrow x_{1,2}= \pm \sqrt{\frac{2 E}{k}}}{\sqrt{\frac{k}{m}} \sqrt{x_{1,2}^{2}-x^{\prime 2}}}=2 \sqrt{\frac{m}{k}} \int_{-1}^{1} \frac{d y}{\sqrt{1-y^{2}}}=\frac{2 \pi}{\omega} \widetilde{(}\right)
$$

(V1) Many particles

$$
\begin{aligned}
& \text { 2nd } l_{a w}: \quad \dot{\overrightarrow{P_{i}}}=\overrightarrow{F_{i}}=\overrightarrow{F_{i}} \overrightarrow{\text { ext }}+\sum_{j \neq i} \overrightarrow{F_{j \rightarrow i}}
\end{aligned}
$$

with $M=\sum_{i} m_{i}, \vec{R}=\frac{1}{M} \sum_{i} m_{i} \overrightarrow{\eta_{i}} \begin{gathered}\text { Centa } \\ m_{\text {ops }}\end{gathered}$
$\vec{F}^{\prime \text { ext }}=\overrightarrow{0} \Rightarrow \vec{P}$ unsurad
Angolm momentum nevisited

$$
\begin{aligned}
& =0 \text { if } \vec{F}_{j \rightarrow i} \text { parallel to } \overrightarrow{r_{i}}-\vec{r}_{j} \text {. }
\end{aligned}
$$

Let $\overrightarrow{n_{i}}=\vec{R}+\overrightarrow{\delta_{i}}: \quad \vec{L}=\sum_{i} m_{i}\left(\vec{R}+\overrightarrow{\delta_{i}}\right) \times\left(\vec{R}+\overrightarrow{\delta_{i}}\right)$

$$
\begin{aligned}
& =M \vec{R} \times \dot{\vec{R}} \rightarrow \text { onfital } \\
& \left.+\sum_{i} m_{i} \vec{R} \times \overrightarrow{\delta_{i}}\right\} \overrightarrow{0}: \sum_{i} m_{i} \overrightarrow{\delta_{i}}=\sum_{i} m_{i}\left(\overrightarrow{r_{i}}-\vec{R}\right) \\
& +\sum_{i} m_{i} \overrightarrow{\delta_{i}} \times \vec{R} \\
& +\sum_{i} m_{i} \overrightarrow{\delta_{i}} \times \dot{\overrightarrow{\delta_{i}}} \rightarrow \overrightarrow{\rho_{i n t}}: " m_{i} \overrightarrow{r i n}_{i}=M \vec{R}=\overrightarrow{0}
\end{aligned}
$$

Enesgy nevisited : $T=\sum_{i} \frac{1}{2} m_{i} \dot{\vec{\pi}}_{i}^{2} \quad \sum_{i} m_{i} \vec{\delta}_{i}=0$

$$
\begin{aligned}
& \overrightarrow{r_{i}}=\vec{R}+\overrightarrow{\delta_{i}}: T=\sum_{i} \frac{1}{2} m_{i}\left(\dot{\vec{R}}^{2}+{\dot{\delta_{i}}}^{2}+2 \dot{\vec{R}} \cdot \overrightarrow{\dot{\delta}_{i}}\right) \\
= & \frac{1}{2} M \dot{\vec{R}}^{2}+\frac{1}{2} \sum_{i} m_{i} \dot{\vec{\delta}}_{i}^{2}
\end{aligned}
$$

$$
E=T+U \text { consenved with } U=\sum_{i} U_{i}^{\text {ent }}+\sum_{i<j j} U_{i j}
$$

proob: $\quad d T=\sum_{i} d\left(\frac{1}{2} m_{i} \dot{\vec{n}}_{i}^{2}\right)=\sum_{i} m_{i} \dot{\overrightarrow{n_{i}}} \cdot \frac{d \dot{\overrightarrow{n_{i}}}}{d t} d t$

$$
\begin{aligned}
& =\sum_{i}\left(\vec{F}_{i}^{\text {ext }}+\sum_{j \neq i} \vec{F}_{j \rightarrow i}^{\prime}\right) \cdot d \vec{n}_{j} \\
& =\sum_{i}-\vec{\nabla} U_{i}^{\text {ext }} \cdot d{\overrightarrow{n_{i}}}_{i}-\sum_{i<_{j}} \frac{\vec{F}_{j}>_{i}}{-\frac{\partial}{\partial\left(\overrightarrow{n_{i}}-\overrightarrow{n_{j}}\right)}} U_{i j} \cdot\left(d \overrightarrow{n_{i}}-d \overrightarrow{n_{j}}\right) \\
& =-d U
\end{aligned}
$$

We'll come back to nigid bodies lates.

$$
七_{\left\|\overrightarrow{n_{i}}-\overrightarrow{n_{j}}\right\| \text { bixed }}
$$

(1) Rest of the counse

Eules, Lugrange, Hamilton and Jawobe: more bormal formulation of mechanies. and mone elegart!
\rightarrow Easien to tackle mone complex probtems
\rightarrow Mase tanasement: symmetries, mathematial stautione
\rightarrow Lagangian / thmiltonian Burmalism undulies $\xlongequal{\prime \prime}$ (! ! of moden pRysies (QFT, stat mel, GR ef. ...)
\rightarrow Comections to QM, Stat Mach...

