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Our goal is to study the trajectory of a particle of mass m in a central potential U(r) = —k/r with k > 0. Since
the torque of the corresponding force is zero, the angular momentum is conserved, and the motion is effectively two-
dimensional (in the plane orthogonal to the initial angular momentum). We take the angular momentum to be along
the z axis, and use polar coordinates in the zy plane. The conservation of angular momentum gives us that
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is a conserved quantity. From the second law, we have the equation of motion
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Using the conservation law to get rid of 6 . we find the effective one-dimensional motion m# = —dU.g /dr with the
effective potential:
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The energy is given by
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We can also express the temporal derivative as
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The simplest way to derive the shape of the trajectory is to use energy conservation and to introduce a new variable
u such that r = 1/u. We have
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Let’s plug this expression into () (using r = 1/u in (3))
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Now, since energy is conserved along the trajectory, we have
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This is the equation of a harmonic oscillator with a constant right hand side. The particular solution is that constant,
so the general solution reads:
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where A and 6y are integration constants. 6y can be chosen by setting a reference angle from which angles are
measured, so it is usually set to some convenient choice like 8y = 0 or 6y = 7. Going back to r = 1/u, we have
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where € = —Al%/(km) and we have chosen 6y = 0. This is the equation of a conic section in polar coordinates.
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