Statistical Physics (P602), Fall 2024

Statistical Physics (P602), Fall 2024

Instructor: Romain Vasseur, Associate Professor
office: Hasbrouck 405A
email: rvasseur[at]umass[dot]edu
office hours: by appointment and email, or visit my office

Lectures: MWF 12.20-13.10pm, room: Has 104A

TA: Sofia Corba
email: spcorba[at]umass[dot]edu

Textbook: Kardar, Statistical Physics of Particles (Cambridge University Press)
I also strongly recommend David Tong’s lecture notes: http://www.damtp.cam.ac.uk/user/tong/statphys.html

Website: https://websites.umass.edu/rvasseur/teaching/. Course materials will also be made available on Moodle.

Grading:
The course grade will be based 35% on the homework, 30% on the midterm, and 35% on the final exam.

Topics:

  • Introduction and probabilities
  • The fundamentals of statistical mechanics
  • Classical ideal gases
  • Thermodynamics
  • Quantum statistical mechanics (phonons, photons, diatomic gases)
  • Ideal Bose and Fermi gases
  • Interacting systems and phase transitions
    • Dilute interacting gases and van der Waals equation
    • Phase transitions (Ising model, mean field theory, critical exponents)
    • Landau theory
    • Renormalization group
  • Numerical methods

Lecture Notes:

  1. Introduction
  2. The fundamentals of statistical mechanics
  3. Ideal classical gases
  4. Thermodynamics
  5. Quantum Statistical Mechanics
  6. Ideal Bose and Fermi gases
  7. Interacting systems and phase transitions
  8. Numerical Methods

Combined file (87 pages): P602_Combined

Schedule:

  • 9/5: Introduction, statistics and coin toss. (Chap 1)
  • 9/6: Central limit theorem and Maxwell-Boltzmann distribution. (Chap 1)
  • 9/6: afternoon: Microcanonical ensemble (Chap 2: pages 1-5)
  • 9/9: Two-level systems, Pressure, Canonical ensemble. (Chap 2: pages 6-9)
  • 9/16: Energy fluctuations in the canonical ensemble, equivalence of canonical and microcanonical ensembles. (Chap 2: pages 9-11)
  • 9/18: Free energy, chemical potential and grand canonical ensemble. (Chap 2: pages 12-14)
  • 9/23: Grand potential. Ideal gas: from quantum to classical (Chap 2: page 15. Chap 3: pages 1-2.)
  • 9/25: Ideal monoatomic gases, free energy, equation of state, equipartition, Gibbs’ paradox. (Chap 3: pages 3-5.)
  • 9/27: Ideal gases cont’d, chemical potential, diatomic gas and specific heat. (Chap 3: pages 5-7.)
  • 9/27 afternoon: Ideal gases in the micro canonical ensemble. Quantum stat mech: density of states. (Chap 5: pages 1-2.)
  • 9/30: Black body radiation (Chap 5: pages 2-4)
  • 10/02: Phonons (Chap 5: pages 5-7)
  • 10/07: Diatomic gas revisited, Bose-Einstein distribution (Chap 5: page 7, Chap 6: pages 1-2)
  • 10/09: Bose gases: high T expansion (Chap 6: pages 2-4).
  • 10/11: BE condensation (Chap 6: pages 4-5).
  • 10/14: BE condensation (cont’d: 5-7).
  • 10/16: end BEC. Fermi gases (Chap 6: pages 7-8)
  • 10/18: Degenerate Fermi gas at T=0, Fermi energy. (Chap 6: pages 7-9)
  • 10/21: Sommerfeld expansion. specific heat. (Chap 6: pages 9-11)
  • 10/23: Pauli paramagnetism. (Chap 6: page 12)
  • 10/25: Virial expansion (Chap 7: pages 1-2)
  • 10/28: VdW equation of states (Chap 7: pages 3-4)
  • 10/30: Maxwell construction, phase diagram, universality (Chap 7: pages 4-5)
  • 11/1: Universality, Ising model (Chap 7: pages 5-6)
  • 11/4: Ising model, mean-field theory
  • 11/6: Mean-field theory cont’d, critical exponents and universality
  • 11/8: Solution of the 1d Ising model, transfer matrix
  • 11/13: Landau theory
  • 11/15: Landau theory con’d
  • 11/18: RG: general approach, 1d Ising model.
  • 11/20: RG: Migdal-Kadanoff approximation

Recent Posts