## Simulation techniques for dense particulate matter

Corey S. O'Hern<br>Department of Mechanical Engineering \& Materials Science<br>Department of Physics<br>Department of Applied Physics<br>Graduate Program in Computational Biology \& Bioinformatics<br>Integrated Graduate Program in Physical \& Engineering Biology

## Outline

Lecture 1: What are granular materials? What is the jamming transition? Disk and sphere packings.

Lecture 2: Molecular dynamics (discrete element modeling) simulations

Lecture 3: Simulations of the glass transition
Lecture 4: Applications of simulation methods to granular and glassy materials

Jamming Transitions



## Key features of granular materials:

- Macroscopic sizes, > $50 \mu \mathrm{~m}$
- Not influenced by thermal fluctuations
- Highly frictional
- Highly dissipative, out of thermal equilibrium
- Polydisperse
- Nonspherical particles
- Jamming, avalanches, stick-slip, aging, shear banding, protocol dependence, nonlinear, non-elastic, ...


## Forces involved in granular media

- Interparticle contact forces
- Gravity
- Electrostatic
- Hydrodynamic
- van der Waals

Three methods to generate jammed, frictionless packings

1. Monte Carlo Method
2. Lubachevsky-Stillinger Method
3. Soft-sphere Molecular Dyanmics Method

## Frictionless Disks: Weakly Polydisperse


hexagonal
$\phi_{\text {square }}=\pi R^{2} /(2 R)^{2}=\pi / 4 \approx 0.785$

## 2D Circle Packings

| Structure | $\boldsymbol{\phi}$ | $\mathbf{z}$ |
| :--- | :--- | :--- |
| Honeycomb | 0.605 | 3 |
| RLP | 0.75 | 3 |
| Square | 0.78 | 4 |
| RCP | 0.84 | 4 |
| Hexagonal | 0.91 | 6 |

## Frictionless Monodisperse Spheres



FCC, HCP

## 3D Sphere Packings

| Structure | $\boldsymbol{\phi}$ | $\mathbf{z}$ |
| :--- | :--- | :--- |
| Simple cubic | 0.52 | 6 |
| RLP | 0.55 | 4 |
| RCP | 0.64 | 6 |
| BCC | 0.68 | 8 |
| FCC, HCP | 0.74 | 12 |

1. Monte Carlo Method

## Configuration space



## Monte Carlo Packing Method



Figure 1.1: Illustration of the Monte Carlo packing-generation method for a system of $N=6$ bidisperse frictionless disks (half small and half large with diameter ratio 1.4) in 2D. (a) The $x$ - and $y$-coordinates for $N=6$ random points are first generated in a square cell with periodic boundary conditions and the particles are grown uniformly until the closest pair of disks are in contact. (b) An attempt is made to move each particle randomly from the original (dashed outline) to the new position (shaded disk), and the move is accepted if it does not give rise to particle overlap. (c) The disks are expanded uniformly from the original (dashed outline) to the new size (shaded disk) until the two closest disks touch. This process is repeated for $N_{I}$ iterations to obtain a single static packing.


## Rattler Particles




## Pruning contacts from rattlers



$$
N_{c}<N_{c}^{i s o}
$$

Automatic characterization and comparison of jammed packings
Packing fraction

NxN Adjacency Matrix

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{ijj}}=1 \text { if } \mathrm{r}_{\mathrm{ij}} \leq \sigma_{\mathrm{ij}} \\
&=0 \text { if } \mathrm{r}_{\mathrm{ij}}>\sigma_{\mathrm{ij}}
\end{aligned}
$$

NxN Distance Matrix

$$
D_{i j}=r_{i j}
$$

dNxdN Dynamical Matrix $\quad M_{i j}=\frac{\partial^{2} V}{\partial r_{i} \partial r_{j}}$

## Displacement matrix

$$
\begin{gathered}
D_{i j}=\left|\vec{r}_{i}-\vec{r}_{j}\right| \\
q_{2}=\frac{1}{2}\left((\operatorname{Tr} D)^{2}-\operatorname{Tr} D^{2}\right)
\end{gathered}
$$



Figure 1.4: (a) The second invariant $q_{2}=\left((\operatorname{Tr} D)^{2}-(\operatorname{Tr} D)^{2}\right) / 2$ of the distance matrix $D$ plotted versus the packing fraction $\phi$ for $N_{c}=10^{5}$ bidisperse frictionless hard disk packings with $N=6$ generated via the 'basic' Monte Carlo method (after $N_{I}=10^{5}$ iterations) with one (blue xes) or two (green triangles) missing contacts $N_{c}^{\text {iso }}-N_{c}=1$ or 2 relative to the isostatic value for frictionless disks. The MS packings with $N_{c}=N_{c}^{\text {iso }}$ are indicated by the filled red circles. Two configurations with $N_{c}^{\text {iso }}-N_{c}=1$ that belong to a single geometrical family are labeled (b) and (c).

## 2. Lubachevsky-Stillinger Method

B. D. Lubachevsky and F. H. Stillinger, "Geometric properties of random disk packings," J. Stat. Phys, 60 (1990) 561



Lubachevsky-Stillinger Compression Protocol


3. Dissipative Molecular Dynamics Method

## Purely repulsive soft interactions

## $V_{R S}\left(r_{i j}\right) / \varepsilon$



$$
V_{R S}\left(r_{i j}\right)=\frac{\varepsilon}{\alpha}\left(1-\frac{r_{i j}}{\sigma_{i j}}\right)^{\alpha} \Theta\left(1-\frac{r_{i j}}{\sigma_{i j}}\right)
$$

$$
V=\frac{1}{N} \sum_{i>j} V_{R S}\left(r_{i j}\right)
$$


$\mathrm{N} / 2$ large, $\mathrm{N} / 2$ small with diameter ratio $\sigma_{\mathrm{L}} / \sigma_{\mathrm{S}}=1.4$

Notes

## Potential Energy Landscape (PEL)



## Potential energy minimization

$$
\begin{gathered}
m \vec{a}_{i}=\sum_{j} \vec{F}\left(r_{i j}\right)-b \vec{v}_{i} \\
m \vec{a}_{i}=\sum_{j}\left(\vec{F}\left(r_{i j}\right)-b\left(\vec{v}_{i j} \bullet \hat{r}_{i j}\right) \hat{r}_{i j}\right)
\end{gathered}
$$

Notes


## Simulations

| Integrator | Ensemble | $N$ | $E$ | $T$ | $P$ | $\phi$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Velocity Verlet | NVE | 64 | 0.64 | $0.0038 \pm 0.0003$ | $0.064 \pm 0.003$ | 0.6 |
| Gear 4 | NVE | 64 | 0.64 | $0.0038 \pm 0.0003$ | $0.064 \pm 0.002$ | 0.6 |
| Gear 5 | NVE | 64 | 0.64 | $0.0038 \pm 0.0003$ | $0.064 \pm 0.002$ | 0.6 |
| Gear 6 | NVE | 64 | 0.64 | $0.0038 \pm 0.0004$ | $0.064 \pm 0.002$ | 0.6 |
| Gaussian Constraint | NVT | 64 | $0.63 \pm 0.04$ | 0.0037 | $0.063 \pm 0.004$ | 0.6 |
| Nose-Hoover | NVT | 64 | $0.63 \pm 0.02$ | 0.0037 | $0.063 \pm 0.003$ | 0.6 |

$$
\frac{P \sigma^{3}}{\varepsilon}=\frac{\sigma^{3}}{\varepsilon L^{3}} \sum_{i>j} r_{i j} F_{i j}
$$







Isostatic packings for $\mathrm{N}=6 ; \mathrm{N}_{\mathrm{c}}=11$


Frequency distribution for $\mathrm{N}=6$ isostatic packings


$(\Delta \phi)^{+}>(\Delta \phi)_{\mathrm{c}}{ }^{\text {? }}$ ?
$\Delta \phi_{\mathrm{c}}{ }_{\mathrm{c}}>0$; soft particles
$\Delta \phi_{\mathrm{c}}<0$; hard particles

Dissipative MD method





## What have we learned so far?

- Hard and soft sphere methods yield same isostatic packings, but probabilities depend on protocol
- Isostatic packings are points in configuration space
- Hypostatic packings form higher dimensional structures in configuration space


## Edwards’ Hypothesis for Granular Packings

"for a given volume all [jammed] configurations are equally probable"
S. F. Edwards and R. B. S. Oakeshott, "Theory of Powders", Physica A 157 (1989) 1080
...but often jammed packings are not equally likely!

rare

$10^{6}$ more frequent

## Experimental protocol to generate frictionless MS packings

$(\mathrm{N}+1) / 2$ small particles ( $\mathrm{N}-1$ )/2 large particles
-Plastic or steel particles
-shake and settle
-add low amplitude, high frequency vibrations to excite particle rotation and remove frictional contacts
-repeat $10^{6}$ times to create an ensemble of static packings



## Deposition Algorithm in Simulations



$$
\begin{gathered}
\bar{g}=\frac{m_{S} g}{k \sigma_{S}} \\
U=\frac{1}{2} \sum_{\langle i, j\rangle} k \sigma_{i j}\left(1-\frac{r_{i j}}{\sigma_{i j}}\right)^{2} \theta\left(1-\frac{r_{i j}}{\sigma_{i j}}\right) \\
\sigma_{i j}=\frac{\left(\sigma_{i}+\sigma_{j}\right)}{2}
\end{gathered}
$$

- All geometric parameters identical to those for experiments
- Terminate algorithm when $\mathrm{F}_{\text {tot }}<\mathrm{F}_{\text {max }}=10^{-14}$
-Vary random initial positions and conduct $\mathrm{N}_{\text {trials }}=10^{8}$ to find 'all' mechanically stable packings for small systems $\mathrm{N}=3$ to 10 .


## Mechanically Stable Frictionless Packings



- Distinct MS packings distinguished by particle positions $\left\{\vec{r}_{i}\right\}$


## Configuration Space of Mechanically Stable Packings

$$
R=\left\{\vec{r}_{1}, \vec{r}_{2}, \square, \vec{r}_{N}\right\}
$$


$\bullet 8$
$: \triangleq \Delta R_{C}$
$-\Delta \mathrm{R}_{\mathrm{D}}=$ distance in configuration space between distinct MS packings
$\cdot \Delta \mathrm{R}_{\mathrm{C}}=$ error in measuring distinct MS packings

## Separation in Configuration Space



- MS frictionless packings are discrete points in configuration space


## How is the quantitative agreement between sims and exps?


-95\% of distinct MS packing match; others are unstable in sims

## MS Packing Probabilities Are Robust



- Rare MS packings in exps are rare in sims; frequent MS packings in exps are frequent in sims


## Frictional Packings

## Key Points

- Frictionless packings at jamming onset occur as points in configuration space with $N_{c}=N_{c}^{0}$ and $\phi=\phi_{\mathrm{J}}$
- Frictional packings at jamming onset occur as finite dimensional subspaces in configuration space with $N_{c}<N_{c}^{0}$ and $\phi<\phi_{\mathrm{J}}$
- Probability to obtain a particular frictionless packing at jamming onset is determined by fraction of initial conditions that "are collected" by that packing
- Probability to obtain frictional packing with a given number of contacts is proportional to the volume of configuration space occupied by admissible packings

small $\mu ;<\mathrm{z}>=4 ; \phi_{\mathrm{J}} \sim 0.84$

large $\mu ;<\mathrm{z}>\sim 3 ; \phi_{\mathrm{J}} \sim 0.76$


What is the characteristic $\mu^{*}$ above which static packings transition from frictionless to frictional? Does this crossover depend on N? How does $\mu^{*}$ depend on packing-generation protocol?
L. Silbert, "Jamming of frictional spheres and random loose packing," Soft Matter 6 (2010) 2918

Can we predict the structural and mechanical properties of frictional packings using frictionless packings?

## Contact Interactions

$V_{R S}\left(r_{i j}\right) / \varepsilon$


Total potential energy $\quad V=\sum_{\langle i, j\rangle} V\left(r_{i j}\right)$

## Classification of Packings

Distance matrix

$$
D_{i j}=\left|\vec{r}_{i}-\vec{r}_{j}\right|
$$

particles i, j

Second invariant $\quad q_{2}=\frac{1}{2}\left((\operatorname{Tr} D)^{2}-\operatorname{Tr}\left(D^{2}\right)\right)$

## Distance Matrix for Frictionless Packings



- $\mathrm{N}=4$68


## Cundall-Strack Model for Friction

$$
\begin{aligned}
& F_{n}^{i j}=k_{n}\left(\sigma-r_{i j}\right) \\
& F_{t}^{i j}=\min \left(\left|k_{t} \Delta u_{t}\right|, \mu\left|F_{n}^{i j}\right|\right)
\end{aligned}
$$

$$
F_{n, t}^{i j}=0
$$




Cundall-Strack Packings for $\mathrm{N}=6$


## Packings of frictional particles are saddle packings of frictionless particles

Saddle number (m)

$$
N_{c}^{i s o}-N_{c}
$$

$$
\mathrm{N}_{\mathrm{c}}
$$

0
0
$\mathrm{N}_{\mathrm{c}}=2 \mathrm{~N}-1$
1
1
$\mu$
N/2-1
N/2-1
$\mathrm{N}_{\mathrm{c}}=3 / 2 \mathrm{~N}$

## Probability of $\mathrm{m}^{\text {th }}$ Order Saddles For N=30 Frictional Packings



Static Friction Coefficient

## Spring Model



## Cundall-Strack Frictional Packings $1^{\text {st }}$ Order Saddles Enumerated



## Cundall-Strack Frictional Packings $1^{\text {st }}$ Order Saddles Enumerated




## Theoretical description for $\mathrm{P}_{\mathrm{m}}(\mu)$

- Enumerate all m=0, 1, 2,... packings
- Calculate volume of configuration space $\mathrm{V}_{\mathrm{m}}(\mu)$ for a given m where packings are stabilized by $\mu^{\prime} \leq \mu$ with $F_{n}^{i j}>0$ and $\left|F_{t}^{i j}\right| \leq \mu\left|F_{n}^{i j}\right|$
- Find that $\mathrm{V}_{\mathrm{m}}(\mu) \sim \mu^{\mathrm{m}}$



## Theoretical description for $\mathrm{P}_{\mathrm{m}}(\mu)$

$$
\begin{gathered}
Z_{m}(\mu) \propto V_{m}(\mu) \delta^{2 N-1-m} \\
\frac{Z_{m}(\mu)}{Z_{0}(\mu)} \propto\left(\frac{l(\mu)}{\delta}\right)^{m} \\
P_{m}(\mu)=\frac{A_{m} \mu^{m}}{\sum_{m=0}^{m_{\text {max }}} A_{m} \mu^{m}}=\frac{a_{m} \mu^{m}}{1+\sum_{m=1}^{m_{\text {max }}} a_{m} \mu^{m}} \\
\mathrm{~A}_{\mathrm{m}} \approx \mathrm{~N}_{\mathrm{s}}(\mathrm{~N}) \mathrm{N}_{\mathrm{b}}(\mathrm{~N}, \mathrm{~m})
\end{gathered}
$$

## $\mathrm{N}=30$


$\mathrm{N}=30,64,128$

## Conclusions

1. Frictional packings can be organized by saddle order $m$.
2. Frictional packings occur as geometrical families in dimension m .
3. Can predict $<\mathrm{z}>(\mu)$ in large systems using enumeration of packings in small systems.
4. Similar theoretical description holds for $\mathrm{m}<0$ for overcompressed frictionless packings.
5. How does $<\mathrm{z}\rangle(\mu), \phi_{J}(\mu)$ depend on packing-generation protocol?

## How do we calculate $\mathrm{P}\left(\mathrm{N}_{\mathrm{c}}, \phi\right)$ ?

T. Bertrand, R. P. Behringer, B. Chakraborty, CSO, and M. D. Shattuck, ` Protocol dependence of the jamming transition," Phys. Rev. E 93 (2016) 012901, $\quad N_{c}=N_{c}^{0}$

## Protocol Dependence

Frame \# $=1, \mathrm{phi}=0.024671$



After contact forms, initiate double-sided spring


Break double-sided spring between 3 and 4 when spring becomes stretched after energy minimization

Frame \# $=1$, phi $=0.032002$




Normal modes

$$
\begin{aligned}
\omega_{0}^{2}=\frac{k}{m} \quad m \ddot{x}_{1} & =-k x_{1}+k\left(x_{2}-x_{1}\right) \quad \text { Heective } \\
m \ddot{x}_{2} & =-k\left(x_{2}-x_{1}\right)-k x_{2} \\
& x_{1} \\
& =A_{1} \cos (\omega t-\phi) \\
x_{2} & =A_{2} \cos (\omega t-\phi) \\
0 & =\left(\bar{\omega}^{2}-2\right) A_{1}+A_{2} \\
0 & =\left(\bar{\omega}^{2}-2\right) A_{2}+A_{1}
\end{aligned}
$$

$$
\omega^{2}=1 \quad \omega^{2}=3
$$

$$
\begin{array}{r}
x_{1}(t)=A_{1} \cos \omega_{0} t-\phi_{1}+A_{2} \cos \sqrt{3} \omega_{0} t-\phi_{2} \\
x_{2}(t)=A_{1} \cos \omega_{0} t-\phi_{1}-A_{2} \cos \sqrt{3} \omega_{0} t-\phi_{2} \\
A_{1}, A_{2}, \phi_{1}, \phi_{2}
\end{array}
$$

How many initial conditions: two for $x_{1}$, two for $x_{2}$

## Dynamical Matrix

$$
D_{i j}^{r}=\left.\frac{\partial^{2} V(\vec{r})}{\partial r_{i} \partial r_{j}}\right|_{\vec{r}=\vec{r}_{0}} \quad \mathrm{~d} N-\mathrm{d} \text { eigenvalues; }\left(\omega_{\mathrm{i}}^{\mathrm{d}}\right)^{2}>0
$$

## Sources of nonlinearities in particulate media

- Breaking existing contacts and forming new contacts (contact clapping/thermal fluctuations)
- Nonlinear interaction potential
- Explicit dissipation from normal contacts
- Sliding and rolling friction


## Contact Interactions

$$
\frac{V\left(r_{i j}\right)}{\varepsilon}=\alpha^{-1}\left(1-\frac{r_{i j}}{\sigma_{i j}}\right) \sqrt{\alpha}\left(1-\frac{r_{i j}}{\sigma_{i j}}\right)
$$

- Several nonlinear contributions


## Density of vibrational modes assuming linear response



- Formation of plateau in $\mathrm{D}(\omega)$ (excess of low-frequency modes) as $\Delta \phi \rightarrow 0$
- $\omega^{*} \sim \Delta \mathrm{z} \sim \Delta \phi^{0.5}$ responsible for anomalous structural/mechanical properties of athermal systems as well as boson peak/anomalous thermal conductivity in glasses


## The FPU paradox

The original idea, proposed by Enrico Fermi, was to simulate the one-dimensional analogue of atoms in a crystal: a long chain of particles linked by springs that obey Hooke's law (a linear interaction), but with a weak nonlinear correction (quadratic for the FPU- $\alpha$ |model or cubic for the FPU- $\beta \mid$ model), see Figure 1.

A purely linear law for the springs guarantees that energy given to a single 'normal' mode always remains in that mode (see caption of Figure 2 for the definition of normal modes in terms of atom displacements from their equilibrium positions).

Fermi, Pasta and Ulam thought that, due to the nonlinear correction, the energy introduced into the lowest frequency mode $k=h$ should have slowly drifted to the other modes, until the equipartition of energy, a consequence of ergodicity, would have been reached. The beginning of the calculation indeed suggested that this was the case. Modes $k=2, k=3, \ldots$, were successively excited, reaching a state close to equipartition, as shown in Figure 2. However, by accident, one day, they let the program run longer. When they realized their oversight and came back to the computer room, they noticed that the system, after remaining in the near equipartition state for a while, had then departed from it. To their great surprise, after 157 periods of the mode $k=1$, almost all the energy (all but $3 \%$ ) was back to this mode. Further calculations, performed later with faster computers, showed that the same phenomenon repeats many times, and that a super-recurrence exists, at which the initial state is recovered with an even higher accuracy (see Ford, 1992 and Weissert, 1997 for a historical account).


Fig. 3 Time-averaged number of contacts $N_{c}(\mathbf{a}, \mathbf{c})$ and color-scale plot of $\log _{10} D\left(\bar{\omega}^{\nu}\right)(\mathbf{b}, \mathbf{d})$ for static packings of $N=32$ bidisperse disks perturbed along a single eigenmode (mode 12) as a function of the perturbation energy $E / N$. At $E=0$, the packing possesses the isostatic number of contacts $2 N^{\prime}-1=63$. In $\mathbf{b}, \mathbf{d}$, the solid horizontal line represents the frequency of the driving frequency $\omega_{12}$ and the dotted horizontal lines indicate harmonics of the driving frequency,
$\alpha=5 / 2$

$2 \omega_{12}, 3 \omega_{12}$, and $4 \omega_{12}$. The vertical solid and dashed lines indicate the energies $E_{c}$ above which the first contact breaks and $E_{1}$ above which there is on average one contact missing from the zero-temperature configuration. The inset shows a close-up of the region between $E_{c} / N$ and $E_{1} / N$, where the solid horizontal lines give the dynamical matrix frequencies. The left (right) columns show the results for purely repulsive linear (Hertzian) spring interactions

Time-averaged contact number


Glass line; $\tau_{\mathrm{r}} \rightarrow \infty$
Transition between ICS and HCS
○○○ Strictly harmonic line


## DL





## Measurements of vibrational modes

1. $\quad D_{i j}^{r}=\left.\frac{\partial^{2} V(\vec{r})}{\partial r_{i} \partial r_{j}}\right|_{\vec{r}=\vec{r}_{0}} \quad \mathrm{~d}$ N- d eigenvalues; $\mathrm{d}_{\mathrm{i}}^{\mathrm{r}}=\left(\omega_{\mathrm{i}}^{\mathrm{d}}\right)^{2}>0$.
2. $D_{i j}^{s}\left(\omega^{s}\right)=E_{i k} C_{k j}^{-1} \quad$ d N- d eigenvalues; $\mathrm{d}_{\mathrm{i}}{ }_{\mathrm{i}}=\left(\omega_{\mathrm{i}}^{\mathrm{v}}\right)^{2}>0$.

$$
\begin{gathered}
C_{i j}=\left\langle\left(r_{i}-\left\langle r_{i}\right\rangle\right)\left(r_{j}-\left\langle r_{j}\right\rangle\right)\right\rangle \\
E_{i k}=m\left\langle v_{i} v_{k}\right\rangle
\end{gathered}
$$

3. $D_{\text {vacf }}\left(\omega^{v}\right)=\int e^{i \omega t}\langle\vec{v}(t) \cdot \vec{v}(0)\rangle d t \quad$ Continuous function


Solid lines: vacf
Vertical dashed lines: DM
Symbols: covariance

$$
\begin{gathered}
\mathrm{N}=10 \\
\Delta \phi=10^{-6}
\end{gathered}
$$

$$
\Delta \phi>0
$$

$$
\Delta \phi<0
$$

$$
\Delta \phi=-10^{-6}
$$

Covariance matrix


## Density of vibrational modes for HCS

## Summary

1. HCS 'phase' with $z / z_{\text {iso }} \sim 0.5$, new and non-unique density of vibrational modes that appears to persist in large-system limit
2. HCS is different from ICS
3. Normal modes do not persist in jammed solids, e.g. continuous set of frequencies develops

## Non-spherical particles

Most current computational studies use hard-particle Monte Carlo

## Pairwise Repulsive Interactions: True Contact Distance


$V\left(r_{i j}\right)=0$

$$
V\left(r_{i j}\right)=\left\{\begin{array}{cl}
\frac{\varepsilon}{\alpha}\left(1-\frac{r_{i j}}{\sigma_{i j}}\right)^{\alpha} & r<\sigma_{i j} \\
0 & r \geq \sigma_{i j}
\end{array}\right.
$$



$$
V\left(r_{i j}\right)>0
$$

$\alpha=2$; linear springs

## Packings of ellipse-shaped particles

bidisperse

$\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\alpha$
$\underline{a_{1}}=1.4$
$a_{2}$


## Structural Properties




Prolate ellipsoids




## Spherocylinders



Figure 2: (a) Packing fraction $\phi$ and (b) coordination number $\langle z\rangle$ for static packings of spherocylinders from our preliminary studies ( $N=48$ and 64 particles) and those of Ref. [51] as well as rigid dimers $(N=256)$ as a function of aspect ratio $\alpha$. The dotted and dashed horizontal lines in (b) give the values of $\langle z\rangle=6$ and 10 for isostatic packings of spheres and sphero-cylinders (or dimers), respectively. (c) Visualization of a static packing of $N=64$ sphero-cylinders with $\alpha=2.8$.

Eigenfrequency Spectra for ellipse packings

-Two gaps in spectrum over range of aspect ratios

- Onset of first gap depends on aspect ratio
-Second gap closes at large aspect ratios


## I. Quartic Modes



## Rotational/Translational Character of Eigenmodes



$$
T_{i}=\sum_{j=1}^{N}\left[\left(e_{x i}^{j}\right)^{2}+\left(e_{y i}^{j}\right)^{2}\right] \quad T_{i}=1-R_{i}
$$

## 2D versus 3D: Same conclusions


-Two gaps in spectrum over range of $\alpha$

- Onset of first gap depends on aspect ratio
- Second gap closes at large aspect ratios

- Modes i < i* are quartic in limit overlap $\rightarrow 0$


## Summary

How do we develop a theory for z and $\phi$ as a function of aspect ratio? "Theory" for spherical particles relied on isostaticity.

How do mechanical properties depend on $\alpha$, friction, and bending stiffness?

