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Outline

Lecture 1: What are granular materials? What is the jamming
transition?  Disk and sphere packings. 

Lecture 2: Molecular dynamics (discrete element modeling) 
simulations

Lecture 3: Simulations of the glass transition

Lecture 4: Applications of simulation methods to granular and 
glassy materials



Jamming Transitions





Key features of granular materials:

• Macroscopic sizes, > 50 μm
• Not influenced by thermal fluctuations
• Highly frictional
• Highly dissipative, out of thermal equilibrium 
• Polydisperse
• Nonspherical particles
• Jamming, avalanches, stick-slip, aging, shear banding, 
protocol dependence, nonlinear, non-elastic, … 



• Interparticle contact forces 
• Gravity
• Electrostatic
• Hydrodynamic
• van der Waals

Forces involved in granular media



Three methods to generate jammed, frictionless packings 

1. Monte Carlo Method
2. Lubachevsky-Stillinger Method
3. Soft-sphere Molecular Dyanmics Method



Frictionless Disks: Weakly Polydisperse

ϕ

ϕdensest≈0.907=ϕRCP=0.84ϕRLP=0.75

ϕsquare=πR2/(2R)2=π/4≈0.785

hexagonal



Structure ϕ z
Honeycomb 0.605 3
RLP 0.75 3
Square 0.78 4
RCP 0.84 4
Hexagonal 0.91 6

2D Circle Packings 



Frictionless Monodisperse Spheres

ϕ

ϕdensest≈0.74=ϕRCP=0.64ϕRLP=0.55

FCC, HCP



Structure ϕ z
Simple cubic 0.52 6
RLP 0.55 4
RCP 0.64 6
BCC 0.68 8
FCC, HCP 0.74 12

3D Sphere Packings



1. Monte Carlo Method



Δϕ=ϕJ-ϕ

Configuration space

ϕ<ϕJ≈0.539 ϕ>ϕJ



Monte Carlo Packing Method



3 independent trials Average over 103 trials

104 trials

105 trials

105 trials

MD method



Rattler Particles

θ1>π
Nc=2 Nc=3Nc=0,1



NI=104NI=108

rij>σij

rij<σij

N=6

N=12

NI=104NI=108

contact out of contact

N=6

12



Pruning contacts from rattlers



Automatic characterization and comparison of jammed packings

NxN Adjacency Matrix

NxN Distance Matrix

dNxdN Dynamical Matrix

Aij = 1 if rij ≤ σij
= 0 if rij > σij

Packing fraction φJ



Displacement matrix 



(b)



2. Lubachevsky-Stillinger Method

B. D. Lubachevsky and F. H. Stillinger, “Geometric properties of random disk packings,” 
J. Stat. Phys. 60 (1990) 561



ϕ=0.6





Lubachevsky-Stillinger Compression Protocol



R1

R2 < R1

m=-1

Collision frequency

ϕJ



3. Dissipative Molecular Dynamics Method



σi

α=2

non-overlappedoverlapped

ij

rij

Purely repulsive soft interactions

N/2 large, N/2 small with diameter 
ratio σL/σS=1.4

σij=(σi+σj)/2



Notes



Potential Energy Landscape (PEL)

Mechanically stable
packing

Local  
minimum

00 0 Degenerate 
minima

shrink→ ←grow

overlapped non-overlappedMechanically stable
packing



Potential energy minimization



Notes



m=2



(E, <T>, ϕ)
(<E>, T, ϕ)

(P, <ϕ>)
(<P>, ϕ)



Dissipative Molecular Dynamics

ϕ>ϕJ

ϕ>ϕJ

ϕ<ϕJ



ϕ=0.7



ϕ=0.9







LS

MD

1

11



ϕ=0.633

ϕ=0.778

Isostatic packings for N=6; Nc=11

ϕ=0.772



LS

MD

Frequency distribution for N=6 isostatic packings



(Δϕ)c Δϕ(Δϕ)min

noise Different contact
network

isostatic contact
network

Δϕ+
c > 0 ; soft particles

Δϕ-
c < 0 ; hard particles

(Δϕ)+
c > (Δϕ)-

c ?



m ≈ -2N=6

(Δϕ)c=ϕc-ϕJ

Dissipative MD method



-2

-1

overlaps

underlaps



P(ϕJ)

ϕJ

N=32

128

512



What have we learned so far? 

• Hard and soft sphere methods yield same isostatic packings, but
probabilities depend on protocol
• Isostatic packings are points in configuration space
• Hypostatic packings form higher dimensional structures in 
configuration space



Edwards’ Hypothesis for Granular Packings

“for a given volume all [jammed] configurations are equally probable”

S. F. Edwards and R. B. S. Oakeshott, “Theory of Powders”, Physica A 157 (1989) 1080

…but often jammed packings are not equally likely!

rare 106 more frequent



Experimental protocol to generate frictionless MS packings

g
(N+1)/2 small particles
(N-1)/2 large particles

•Plastic or steel particles

•shake and settle

•add low amplitude, high 
frequency vibrations to excite 
particle rotation and remove 
frictional contacts 
•repeat 106 times to create an 
ensemble of static packings

N=7

L

σ



1 cm



Deposition Algorithm in Simulations

•All geometric parameters identical to those for experiments
•Terminate algorithm when Ftot < Fmax =10-14

•Vary random initial positions and conduct Ntrials = 108  to find ‘all’
mechanically stable packings for small systems N=3 to 10.



Mechanically Stable Frictionless Packings

1 2 3

•Distinct MS packings distinguished by particle positions 



Configuration Space of Mechanically Stable Packings

•∆RD= distance in configuration space between distinct MS packings
•∆RC= error in measuring distinct MS packings 



experiments

simulations

Separation in Configuration Space

• MS frictionless packings are discrete points in configuration space



How is the quantitative agreement between sims and exps?

•95% of distinct MS packing match; others are unstable in sims

matched unmatched

next nearest
neighbor

nearest
neighbor



MS Packing Probabilities Are Robust

• Rare MS packings in exps are rare in sims; frequent MS packings in exps are 
frequent in sims



Frictional Packings



Key Points

• Frictionless packings at jamming onset occur as points 
in configuration space with                   and ϕ=ϕJ

• Frictional packings at jamming onset occur as finite 
dimensional subspaces in configuration space with 
and ϕ<ϕJ

• Probability to obtain a particular frictionless packing at 
jamming onset is determined by fraction of initial conditions 
that “are collected” by that packing

• Probability to obtain frictional packing with a given number
of contacts is proportional to the volume of configuration 
space occupied by admissible packings



small μ; <z>=4; ϕJ~0.84 large μ; <z>~3; ϕJ~0.76



μ*

L. Silbert, “Jamming of frictional spheres and random loose packing,” Soft Matter 6 (2010)  2918

What is the characteristic μ* above which static packings transition 
from frictionless to frictional?  Does this crossover depend on N? 
How does μ* depend on packing-generation protocol?

2d bidisperse



Can we predict the structural and mechanical properties 
of frictional packings using frictionless packings? 



σ

Contact Interactions

α=2

Total potential energy

non-overlappedoverlapped

ij





Distance matrix

Second invariant

Classification of Packings

particles i, j



Distance Matrix for Frictionless Packings

N=4
6
8



i j

Cundall-Strack Model for Friction





μ=10-3

μ=1



.

lines

Cundall-Strack Packings for N=6



Packings of frictional particles are saddle packings
of frictionless particles 

Saddle number (m)

0 0

1 1

Nc=2N-1

Nc

.

.

.

.

.

.

.

.

.

Nc=3/2NN/2-1 N/2-1

μ



Probability of mth Order Saddles
For N=30 Frictional Packings

Static Friction Coefficient 

Pm(μ)
m=0

1
2

mmax =14



Spring Model



Cundall-Strack Frictional Packings
1st Order Saddles Enumerated



Cundall-Strack Frictional Packings
1st Order Saddles Enumerated



m=0
m=1

m=2



• Enumerate all m=0, 1, 2,… packings

• Calculate volume of configuration space Vm(μ) for 
a given m where packings are stabilized by μ’≤μ with

> 0 and 

• Find that Vm(μ)~μm

Theoretical description for Pm(μ)



m=1

m=2



Am ≈ Ns(N) Nb(N,m)

Theoretical description for Pm(μ)



μ* ≈ 0.1

N=30

m=0 m=14

N=30, 64, 128



Conclusions

1. Frictional packings can be organized by saddle order m.

1. Frictional packings occur as geometrical families in dimension m.

1. Can predict <z>(μ) in large systems using enumeration of packings 
in small systems.

4. Similar theoretical description holds for m<0 for overcompressed
frictionless packings.

5. How does <z>(μ), ϕJ(μ) depend on packing-generation protocol?  



How do we calculate P(Nc,ϕ)? 

T. Bertrand, R. P. Behringer, B. Chakraborty, CSO, and M. D. Shattuck, ``Protocol 
dependence of the jamming transition,'' Phys. Rev. E 93 (2016) 012901.





Protocol Dependence 



1

2

After contact forms,
initiate double-sided spring

Break double-sided spring
between 3 and 4 when spring
becomes stretched after 
energy minimization

3 4





N=20

with attraction
pure repulsion



N=20;    =39
m=      ,…, 0 from left to right

ϕ/ϕJ

Pm(ϕ/ϕJ)



Normal modes





d N- d eigenvalues; (ωd
i)2 > 0.

Dynamical Matrix



Sources of nonlinearities in particulate media

• Breaking existing contacts and forming new contacts 
(contact clapping/thermal fluctuations)

• Nonlinear interaction potential
• Explicit dissipation from normal contacts
• Sliding and rolling friction



Contact Interactions

• Several nonlinear contributions



Density of vibrational modes assuming linear response

• Formation of plateau in D(ω) (excess of low-frequency modes)
as ∆φ→0
• ω* ~ ∆z ~ ∆φ0.5 responsible for anomalous structural/mechanical
properties of athermal systems as well as boson peak/anomalous 
thermal conductivity in glasses

ω*

A. J. Liu, S. R. Nagel, W. van Saarloos, and M. Wyart, “The jamming scenario--an introdcution and outlook,” Soft Matter (2010).

ϕ-ϕJ





α=2 α=5/2



Glass line; τr ∞

<z>/ziso

Transition between ICS and HCS
Strictly harmonic line

Time-averaged contact number 



ICS



DL



HCS

+



N=10-1024

Δϕ=10-7, 10-4

Δϕ=-10-7,-10-4



Measurements of vibrational modes

1.

2.

3.

d N- d eigenvalues; dr
i = (ωd

i)2 > 0.

d N- d eigenvalues; dv
i = (ωv

i)2 > 0.

Continuous function





Solid lines: vacf
Vertical dashed lines: DM
Symbols: covariance



Δϕ=10-6

Δϕ= -10-6

N=10

Δϕ>0

Δϕ<0



N=128; Δϕ=10-6

Difference from D(ωd)

Covariance matrix Velocity autocorrelation function

C
V



Density of vibrational modes for HCS



Summary

1. HCS ‘phase’ with z/ziso ~ 0.5, new and non-unique 
density of vibrational modes that appears to persist in 
large-system limit
2. HCS is different from ICS
3. Normal modes do not persist in jammed solids, e.g. 
continuous set of frequencies develops



Non-spherical particles

Most current computational studies use hard-particle 
Monte Carlo



The picture can't be displayed.

The picture can't be displayed.

The picture can't be displayed.

The picture can't be displayed.

Pairwise Repulsive Interactions: True Contact Distance

α=2; linear springs



Packings of ellipse-shaped particles

compression method-fixed aspect ratio α

bidisperse

a2
b2

a1 b1



<z
> φ

α α

dimers

ellipses

Structural Properties

dimers

ellipses



Prolate ellipsoids





Spherocylinders



α=1.80

α=1.02

Eigenfrequency Spectra for ellipse packings

i*

ω*

it=(d-1)N

translationalrotational

•Two gaps in spectrum over range of aspect ratios
•Onset of first gap depends on aspect ratio
•Second gap closes at large aspect ratios

2



high frequency
quadratic mode

quartic
mode

slope=4

slope=2

slope=2

I. Quartic Modes

i>i*

i<i*



α=1.01

α=2.00

rotational

translational

Rotational/Translational Character of Eigenmodes



Slope=2

Slope=4
α=1.02

α=1.80

i* it=d-1

2D versus 3D: Same conclusions

•Two gaps in spectrum over range of α
•Onset of first gap depends on aspect ratio
•Second gap closes at large aspect ratios

•Modes i < i* are quartic in limit
overlap → 0

2
1

3



How do we develop a theory for z and ϕ as a function 
of aspect ratio?  “Theory” for spherical particles 
relied on isostaticity. 

How do mechanical properties depend on α, friction, 
and bending stiffness? 

Summary


