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Chapter 1

Introduction

1.1 Subject of the lectures

These lectures concern diffusion processes in heterogeneous environments. The diffusion
processes we will examine have two driving mechanisms (i) a drift due to external forces
such as electric fields, gravity etc. as well as a random noise term whose amplitude can vary
in space. A typical example is the diffusion of a colloid in a medium whose local properties
vary in space (an possibly in time), for example the heterogeneous medium found inside
biological cells. In general, the behavior of these processes is difficult to characterize,
however in many cases (in fact almost all cases), when seen at sufficiently large length and
time scales the process behaves as a simple random walk with bias, it can be characterized
by its mean displacement and mean squared displacement which are in turn described
by effective drifts and diffusion constants. These effective transport properties effectively
characterize the dispersion properties of the system and are the basic parameters needed
to compete reaction rates, survival probabilities, mean exit times etc.

1.2 A few remarks about notation

We will examine stochastic equations which contain random noise, for instance due to
random molecular collisions in the case of Brownian motion. The history of noise in the
system is a random functional, the mean displacement of a particle, whose position is
denoted by X(t), at time t is denoted by

E(X(t)), (1.1)

here E denotes the average over all possible realizations of the noise. In physics the average
value of a random variable X usually denoted as 〈X〉. In these lectures the environment
can also be random and so there are both averages over the random noise (E) and averages
over the environmental disorder (for instance time independent random potentials) which
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we will denote by 〈·〉. Finally we will denote by 〈f〉s the spatial average of a function f(x)
defined over a volume V as

〈f〉s =
1

V

∫
V
dxf(x). (1.2)

Unless otherwise stated I will use the Einstein summation convention where repeated
spatial indices are summed over, for instance the scalar product between two vectors (which
are written in boldface) a and b, whose components are denoted by ai and bi respectively,
is written as

a · b = aibi (1.3)
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Chapter 2

Crash course on stochastic calculus

Here we will look at a class of stochastic processes, known as Langevin processes in physics,
from an informal probabilistic point of view. The slight effort required, with respect to
physical approaches, is worth it as many aspects such as the derivation of the Fokker-Planck
equation and first passage times are immediate in this formalism. A basic knowledge of
this approach will also be useful in Wall Street or London if you decide that you are more
interested in making money than doing physics. The stochastic calculus is the foundation
of financial mathematics and the basis of the famous Black-Scholes formula for pricing
options.

2.1 Discrete time continuous space stochastic processes

Consider a discrete time stochastic process in one dimension (defined at a discrete set of
times t = n∆t where n ∈ Z) obeying the difference equation

X(n+1)∆t −Xn∆t = ∆Xt = u(Xt)∆t+ a(Xt)∆Bt (2.1)

Here u(x) is a local drift field which is deterministic and depends on the particle’s position
Xt - it can be due to convection in a fluid for example or the buoyancy force for a fluid
particle in the Stokes regime of hydrodynamics (viscous flows). The second term is a noise
term due to random fluctuations which are often thermal in nature depending on kBT ,
for a collioid in a fluid the noise term generates an effective molecular diffusivity which
disperses the particle even in the absence of any overall hydrodynamic flow. The stochastic
increment ∆Bt is Gaussian with zero mean so

E(∆Bt) = 0, (2.2)

and we choose the variance to be

E([∆Bt]
2) = ∆t. (2.3)
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This means that its probability density function p(x) is given by

p(x)dx = Prob(∆Bt ∈ [x, x+ dx]) =
1√

2π∆t
exp(− x2

2∆t
)dx. (2.4)

If the noise has no memory then the fundamental stochastic increments are statistically
independent so

E(∆Bt∆Bt′) = E(∆Bt)E(∆Bt′) = 0 (2.5)

for two different times t and t′. Noise which is uncorrelated in time is referred to as white
noise, noise with a non-zero correlation time is referred to as colored. The hypothesis of
white noise requires a separation of times scales, for instance, in colloids the molecular time
scales responsible for the noise are indeed much shorter than the times scales for colloidal
motion. In the simplest case where u = 0 and a is constant we can write down the particle
position at time t = n∆t as

Xt = x0 + a
n∑
i=1

∆Bi∆t, (2.6)

where x0 is the starting position at time 0. The easiest way of calculating the distribution
of Xt, p(x, t) is via its Fourier transform (known as the characteristic function)

p̃(k, t) =

∫
dx p(x, t) exp(−ikx) = E(exp(−ikXt)

= exp(ikx0)
n∏
i=1

E (exp[−ika∆Bi∆t)]) = exp(ikx0) exp(−a
2

2
k2n∆t). (2.7)

Now noting that n∆t = t and inverting the Fourier transform we find(1)

p(x, t) =
1

2π

∫
dk exp(ikx)E(exp[−ikXt]) =

1√
2πa2

exp

(
− 1

2a2t
(x− x0)2

)
(2.8)

The continuous diffusion equation in one dimension is

∂p(x, t)

∂t
= D

∂2

∂x2
p(x, t). (2.9)

The term, D has dimensions L2/T and is called the diffusion constant. If the particle is
started at x0 at time t = 0 the initial condition is p(x, 0) = δ(x− x0). The easiest way to
solve the diffusion equation is by taking a Fourier transform, so calculate the characteristic
function, to obtain

∂p̃(k, t)

∂t
= −Dk2p̃(k, t), (2.10)

(1)Exercise - show the formula that follows
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which has the general solution

p̃(k, t) = p̃(k, 0) exp(−Dk2t) = exp(−ikx0) exp(−Dk2t). (2.11)

This is the same characteristic function as for our discrete model if we identify D = a2/2.
In the continuum limit ∆t → 0 we have constructed a stochastic process whose statistics
are described by the diffusion equation. The average displacement of the stochastic process
E(Xt − x0) = 0, while the mean squared displacement is given by E

(
(Xt − x0)2

)
= a2t =

2Dt (2).

2.2 The Ito Stochastic Calculus

Here we want to take the continuum limit of the stochastic equation (2.1). We see that
by construction the noise term ∆Bt is O(

√
∆t) and so the term ∆B2

t is O(∆t) and so we
need to keep it in deriving differential equations. Consider for a moment

S =

N∑
i=1

∆B2
i∆t. (2.12)

We find that the mean of S is given by

E (S) =
N∑
i=1

E
(
∆B2

i∆t)
)

= N∆t = t. (2.13)

However we have from Wick’s theorem(3):

E
(
S2
)

=

N∑
ij=1

E
(
∆B2

i∆t∆B
2
j∆t

)
=

N∑
ij=1

E
(
∆B2

i∆t

)
E
(
∆B2

j∆t)
)

+ 2E (∆Bi∆t∆Bj∆t)
2

=

N∑
ij=1

∆t2 + 2δij∆t
2 = t2 + 2

t2

N
(2.14)

The variance of S is thus given by

var(S) = E
(
S2
)
− E2 (S) = 2

t2

N
, (2.15)

(2)Exercise - derive this formula using the characteristic function
(3)Exercise: If you don’t know, find out what Wick’s theorem is, and prove the following formulas
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so in the limit of large N this means var(S) → 0 and so S = E (S) (this is basically
the central limit theorem). The continuum stochastic differential equation Eq. (2.1) now
becomes

dXt = u(Xt)dt+ a(Xt)dBt (2.16)

where E([dBt]
2) = dt, further more we find from above that over any time interval t,∫ t

0
dB2

s = E
(∫ t

0
[dBs]

2

)
= t, (2.17)

differentiating this with respect to t (completely non-rigorously) then gives

[dBt]
2 = dt. (2.18)

Using this we can see how an arbitrary function f of the process Xt evolves, i.e. find the
SDE for f(Xt)

df(Xt) =
∂f(Xt)

∂x
dXt +

1

2

∂2f(Xt)

∂x2
[dXt]

2 +O(dt
3
2 ), (2.19)

here we need to keep the second term in the Taylor expansion to makes sure we have all
the terms O(dt). We have that

dX2
t = a2(Xt)[dBt]

2 +O(dt
3
2 ) = a2(Xt)dt, (2.20)

where we have used Eq. (2.18). The SDE for f is then

df(Xt) =
∂f(Xt)

∂x
(u(Xt)dt+ a(Xt)dBt) +

1

2

∂2f(Xt)

∂x2
a2(Xt)dt. (2.21)

Because dBt is chosen independently of the position Xt, taking the average of Eq. (2.21)
yields

E
(
df(Xt)

dt

)
= E

(
∂f(Xt)

∂x
u(Xt) +

1

2

∂2f(Xt)

∂x2
a2(Xt)

)
(2.22)

2.3 Examples of Stochastic Differential Equations

What a physicist calls Brownian motion is actually the process obeying the equation

mdVt = −γVtdt+ adBt, (2.23)

here Vt is the velocity of a particle of mass m, the SDE is simply Newton’s second law
relating the momentum change on the right hand side to the force on the left hand side. The
process Vt, the velocity of the Brownian particle, is called an Orstein-Uhlenbeck process.
The forces acting are: a friction term, with friction coefficient γ plus a random noise
due to molecular collisions with the solvent molecules (which are also responsable for the
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friction). For a spherical colloidal particle in the limit of Stokes flow (low Reynolds number
or viscous flow) the friction coefficient is given by the Stoke’s formula γ = 6πηR, where R
is the colloid radius and η the liquid’s viscosity.

Taking the average value of this equation shows that the average value of the velocity
E(Vt) is zero. Consider now the variable St = V 2

t , we see that St obeys

dSt = 2VtdVt +
1

2
2[dVt]

2 = 2Vt(−
γ

m
Vtdt+

a

m
dBt) +

a2

m2
dt

= −2
γ

m
Stdt+ 2

a

m

√
StdBt +

a2

m2
dt. (2.24)

Taking the average of this equation then gives

E(dSt) = [−2
γ

m
E(St) +

a2

m2
]dt. (2.25)

In thermodynamic equilibrium averages (of quantities at a single time) become time inde-
pendent, and this implies that

E(St) =
a2

2γm
. (2.26)

However equipartition of energy also tells us that

E(
1

2
mV 2

t ) =
1

2
kBT =⇒ 1

2
mE(S) =

a2

4γ
, (2.27)

this means the amplitude of the noise must be given by

a =
√

2kBTγ. (2.28)

This is an example of a fluctuation dissipation theorem that relates the dissipation, friction,
in a system to the fluctuations - the noise. The position of the Brownian particle, if started
from the origin, is given by

Xt =

∫ t

0
Vsds, (2.29)

the MSD is then

E(X2
t ) =

∫ t

0

∫ t

0
dsds′E(VsV

′
s ), (2.30)

so we need to know the correlation function of the velocity. We start by writing Eq. (2.23)
as

md[V exp(
γ

m
t)] = exp(

γ

m
t)dBt, (2.31)

which we can integrate to give

Vt = V0 exp(− γ
m
t) +

1

m

∫ t

0
ds exp

(
− γ
m

(t− s)
)
dBs. (2.32)
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This gives the correlation function for V to be

E(VtV0) = E(V 2
0 ) exp(− γ

m
t), (2.33)

and if we assume that V0 has the equilibrium steady state distribution we find

E(VtV0) =
kBT

m
exp(− γ

m
t). (2.34)

Using time translational invariance of the equilibrium state we thus have E(VsVs′) =
kBT
m exp(− γ

m |s − s′|) (so V is an example of a coloured noise). The term τ = m/γ is
a relaxation time or persistence time for the velocity. This means that the velocity is more
or less the same for the time τ and changes at times bigger than τ . The MSD is now given
by (splitting the integral into the regions where s < s′ and s > s′ and using symmetry)

E(X2
t ) = 2

kBT

m

∫ t

0
ds

∫ s

0
ds′ exp

(
− γ
m

(s− s′)
)

= 2
kBT

γ
[

∫ t

0
ds[1− exp(− γ

m
s)]

= 2
kBT

γ
(t− m

γ
[1− exp(− γ

m
t)]. (2.35)

For short times we find that

E(X2
t ) =

kBT

m
t2, (2.36)

this is the ballistic regime where the velocity is constant and has the Maxwell-Boltzmann
distribution. At later times however we find

E(X2
t ) = 2

kBT

γ
t, (2.37)

this means that the effective diffusion constant of the particle is given by

D =
kBT

γ
(2.38)

this is the famous Stokes-Einstein relation between the friction coefficient and diffusion
constant. Notice that the correlation between the velocity can be written as

E(VsVs′) =
kBT

γτ
exp(−1

τ
|s− s′|), (2.39)

where inertia is small, i.e. m→ 0 we have τ → 0 and

g(s− s′) =
1

τ
exp(−1

τ
|s− s′|)→ 2δ(s− s′).(4) (2.40)

(4)Exercise- prove this by looking at integrals of the form
∫
ds′g(s− s′)f(s′)
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In this limit we find the mathematical version of Brownian motion. This limit is called the
overdamped limit where the inertial or acceleration term in Eq. (2.23) can be neglected to
give simply

−γVtdt+
√

2kBTγdBt = 0 =⇒ Vtdt = dXt =

√
2kBT

γ
dBt. (2.41)

2.4 The Generator and the Forward Fokker-Planck Equation

Consider the average value of an arbitrary function f evaluated at the point Xt for a
stochastic process obeying an Ito SDE, started at x0 at time t = 0, by definition

Ex0 (f(Xt)) =

∫
dx p(x, x0; t)f(x). (2.42)

Now take the time derivative of the above to get

Ex0
(
df(Xt)

dt

)
=

∫
dx
∂p(x, x0; t)

∂t
f(x) = Ex

(
∂f(Xt)

∂x
u(Xt) +

1

2

∂2f(Xt)

∂x2
a2(Xt)

)
=

∫
dx p(x, x0; t)Gf(x), (2.43)

where the operator G is called the generator and is defined by its action on a function f
by

Gf =
1

2
a2(x)

∂2f(x)

∂x2
+ u(x)

∂f(x)

∂x
. (2.44)

This means that ∫
dx
∂p(x, x0; t)

∂t
f(x) =

∫
dx p(x, x0; t)Gf(x). (2.45)

Using the definition of the adjoint of G, denoted by G†, we can write that that∫
dx
∂p(x, x0; t)

∂t
f(x) =

∫
dx G†p(x, x0; t)f(x). (2.46)

The above is true for any reasonable functions f and so we must have

∂p(x, x0; t)

∂t
= G†p(x, x0; t). (2.47)

The equation (2.47) is called the Forward-Fokker-Planck equation, it is called a forward
equation because the partial differential equation is in terms of the variable x, the point
at which the process ends up at time t. In one the dimensional systems studied here the
generic Forward-Fokker -Planck equation is thus

∂p(x, x0; t)

∂t
=

∂2

∂x2
[
a2(x)

2
p(x, x0; t)]− ∂

∂x
[u(x)p(x, x0; t)] (2.48)
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2.5 Generalization to higher dimensions

The generalization of Ito Calculus to higher dimensions is a straightforward exercise. The
form of the SDE is

dXi = ui(X)dt+ aij(X)dBj (2.49)

here the dBi are independent stochastic increments for each spatial direction i. Here the
Ito rule is dBidBj = E(dBidBj) = δijdt. Recalling that the second order Taylor expansion
in d dimensions (using the Einstein summation convention) is given by

f(x + y) = f(x) + yi
∂

∂xi
f(x) +

1

2
yiyj

∂2f(x)

∂xi∂xj
+O(y3). (2.50)

we see that generator is given by

Gf =
1

2
aik(x)ajk(x)

∂2f(x)

∂xi∂xj
+ ui(x)

∂

∂xi
f(x). (2.51)

The corresponding Forward-Fokker-Planck equation is thus

∂p(x,x0; t)

∂t
=

∂2

∂xixj
[
aik(x)ajk(x)

2
p(x,x0; t)]− ∂

∂xi
[ui(x)p(x,x0; t)]. (2.52)

2.6 A brief word on other forms of Stochastic Calculus.

There are other formulations of the stochastic calculus that differ from the Ito calculus
in that the increment dBt is correlated with the current particle position Xt. The most
popular one is the Stratonovich version which looks like normal calculus without the second
order derivative. Another version is the ant-Ito calculus, where some natural physical
processes take their most simple form. However if we fix the Fokker-Planck equation the
corresponding Ito, Stratonovich and anti-Ito processes will have the same statistics - only
the stochastic equations will appear different. If the noise term does not depend on the
position Xt, i.e. aij is constant, the process is independent of the version of the calculus
used.

2.7 Links with physical descriptions of diffusion

In physics diffusion equations are often derived in terms of particle concentrations c(x; t),
for particles that do not interact the concentration of particles evolves like the probability
density function of a single particle and is only mathematically different in that it is not
normalized to unity. In equilibrium, in the absence of external forces, tracer particles in a
liquid or solid should have a uniform density which maximises the entropy of the system.
If the distribution is not uniform the system will relax towards equilibrium, particles move
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from regions where they are concentrated to regions where they are scarce. This means
that a gradient of particle concentration should lead to a flow or current to redistribute
the particles. Fick’s first law states that

J = −D∇c, (2.53)

where D is the local collective diffusion constant which can depend on the environment.
Along with the conservation equation

∂c(x, t)

∂t
+∇ · J = 0, (2.54)

we find the diffusion equation

∂c(x; t)

∂t
= ∇ ·D(x)∇c(x; t). (2.55)

From this we see that the generator for the corresponding SDE can be deduced by noting
that

G†f = ∇ ·D(x)∇f =⇒ Gf = ∇ ·D(x)∇f = D(x)∇2f +∇D(x) · ∇f (2.56)

so here G = G† so G is self adjoint. From G we can read off the Ito SDE corresponding to
the Fick diffusion equation which is

dXt =
√

2D(Xt)dBt +∇D(Xt)dt. (2.57)

This somewhat surprising result shows that, interpreted as an Ito process, a pure diffusion
has a local drift or bias forcing it into regions where D is large ! Without this drift term
the steady state distribution in a finite volume V is given by

ps(x) ∝ 1

D(x)
, (2.58)

rather than a uniform distribution. Physically, in regions where D is large the particle
diffuses quickly and thus leaves them quickly, while it spends more time in regions where
it diffuses slowly. The drift term is exactly the term necessary to counter this tendency by
pushing particles back into the region of high diffusivity.

One way of obtaining a fluctuating diffusivity is by changing the temperature in the
solvent or gas in which the particles diffuse. The Stokes-Einstein formula for the diffusivity
is

D =
kBT

γ
=

kBT

6πRη(T )
, (2.59)

so there is a dependency on the temperature T that can be very strong, especially for
the viscosity η that can vary strongly with temperature, for example close to a liquid-
glass transition. On top of this there is the effect of thermophoresis. In equilibrium the
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temperature should be uniform and so a gradient in temperature can generate a current.
This is the so called Soret effect where particles move along a temperature gradient. The
current associated with a temperature gradient is given by

JT = −DT c∇T, (2.60)

its strength depends on the temperature gradient but also the local concentration of the
particle number, the more particles there are the stronger the current. The factor DT

depends on the precise details of the interaction between the particles and the solvent. For
example, smoke particles in a gas move away from regions of high temperature and DT is
thus positive. Physically this happens because, for a particle of finite size, the molecules on
the hot side transfer more momentum than the molecules on the cooler side, thus pushing
the particle away from regions of high temperature. For liquid solvents however, DT can
be negative.

If we write the overall diffusion equation including the currents coming from the con-
centration gradient and the temperature gradient we find(5)

∂c(x; t)

∂t
= ∇ · (D(x)∇c(x, t) +DT (x)c(x, t)∇T (x)) . (2.61)

Consider now a particle subject to an external force field in a solvent which exerts a
random white noise force on the particle. The SDE for the velocity is

mdVt = −γVdt+ F(Xt)dt+
√

2kBTγdBt. (2.62)

In the over damped limit, m→ 0, this simplifies to give

dXt =
1

γ
F(Xt)dt+

√
2kBT

γ
dBt. (2.63)

Often this sort of equation is written in terms of the bare diffusivity that the particle would
have in the absence of the force, i.e. D = kBT/γ and so we have

dXt = βDF(Xt)dt+
√

2DdBt. (2.64)

The generator G is given by

Gf = D∇2f + βDF · ∇f, (2.65)

where β = 1/kBT , and from this we find the Fokker-Planck equation

∂p(x,x0, t)

∂t
= ∇ · (D∇p(x,x0, t)−DβF(x)p(x,x0, t)). (2.66)

(5)Exercise - write down the Ito SDE corresponding to this Fokker-Planck equation
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In the case where F is conservative, i.e. generated by a potential energy φ such that
F = −∇φ we see that the steady state distribution is given by the Gibbs Boltzmann
distribution for the canonical ensemble

peq(x) =
exp (−βφ(x))

Z
, (2.67)

where

Z =

∫
V
dx exp (−βφ(x)) , (2.68)

is the canonical partition function which ensures the normalization of the probability den-
sity function over the finite volume V of the system. The solvent generating the stochastic
noise exchanges energy with the particle and acts as the reservoir in the canonical ensemble.

2.8 First passage times

Imagine we have a problem where a molecule or colloid whose dynamics can be described
by a SDE reacts when it hits a certain surface, given its starting point x we can ask what is
the average value of the time at which the particle arrives at the reactive surface? Denote
by T the first passage time (FPT) to the surface Σ and define its average value, the mean
first passage time (MFPT), starting from x by t(x) = Ex(T ). There are physical arguments
based on fluxes to derive MFPTs but let’s find the general equation probabilistically. If
the particle starts at x at time t = 0, in the following time interval dt the particle will
move to x + dX but also the time elapsed will increase by dt, this means that

t(x) = E(t(x + dX)) + dt. (2.69)

Now expanding t(x + dX) to second order in dX gives

t(x) = t(x) +Gt(x)dt+ dt, (2.70)

the O(1) terms cancel and the remaining terms of O(dt) then give

Gt(x) = −1. (2.71)

The only thing we need now are the boundary conditions, however if one starts on Σ then
the first passage time to Σ is zero and so t(x) = 0 on Σ are the boundary conditions.
Consider a BM with diffusion constant D in one dimension started at some point x ∈ [a, b],
what is the expected hitting time of the edge of the interval? This means that

D
∂2

∂x2
t(x) = −1 (2.72)
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which has general solution t(x) = −x2/D+ cx+d, the boundary conditions then allow the
determination of the constants of integration c and d to yield

t(x) =
(b− x)(x− a)

D
. (2.73)

This result is interesting, it means that if b becomes large then the MPFT scales like b
even if we start close to a. Most particles starting close to a will hit a within a finite time,
however a few will go the wrong way and take a very long time to come back !(6) Another
question that helps elucidate the MFPT result above is whether the particle in question
hits the point A or the point B first. One can imagine a problem with reactants in a two
dimensional channel that stick to the upper or lower surfaces, from an initial concentration
profile what proportion of the reactants get stuck to each surface? Denote by Pa(x) the
probability that the particle hits the point a before the point b. Again we just look at what
happens in the first time step dt and write (consider a 1d problem - the generalisation to
higher dimensions is straightforward)

Pa(x) = E(Pa(x+ dX)) = Pa(x) +GPa(x)dt, (2.74)

so we simply find GPa(x) = 0. The boundary conditions are obviously Pa(a) = 1 and
Pa(b) = 0. The solution is thus Pa(x) = (b − x)/(b − a) (7). Now consider a particle
diffusing in a potential in one dimension which is periodic with period L as shown in Fig.
(2.84). The MFPT to points a and b starting from x obeys

D
d2

dx2
t(x)−Dβ d

dx
φ(x)

d

dx
t(x) = −1, (2.75)

and this equation can be integrated to give

t(x) = − 1

D

∫ x

a
dx′ exp

(
βφ(x′)

) ∫ x′

a
dy exp (−βφ(y)) +A

∫ x

a
dx′ exp

(
βφ(x′)

)
, (2.76)

where in doing the last integration we have used t(a) = 0. The condition t(b) = 0 then
gives the constant A and we obtain

t(x) = − 1

D

∫ x

a
dx′ exp

(
βφ(x′)

) ∫ x′

a
dy exp (−βφ(y))

+

[
1

D

∫ b
a dz exp (βφ(z))

∫ z
a dy exp (−βφ(y))∫ b

a dz exp (βφ(z))

]∫ x

a
dx′ exp

(
βφ(x′)

)
. (2.77)

(6)Exercise - compute the mean first passage to a or b in presence of a uniform drift u
(7)Exercise - find Pa in presence of a uniform drift u
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Figure 2.1: Periodic potential in one dimension

Now define by t(x;L) the MFPT to move one period L to the left or the right of x, this
means just choosing a = x+ L and b = x− L. This gives(8)

t(x, L) =
1

2D

∫ L

0
dz exp (βφ(z))

∫ L

0
dz exp (−βφ(z)) , (2.78)

remarkably we see that t(x;L) = t(L) is independent of x. It is useful to visualize the
coarse grained diffusion as a discrete random walk on the points nL - we say the discrete
process is at the site nL until the continuous diffusion next arrives at (n−1)L or (n+ 1)L,
at which point the discrete process changes. This discrete random walk has no bias, it is
equally likely to go to the left or right - we can see this by computing the probability that
starting at x it hits x+ L before x− L. This probability of a positive step P+(x) (hitting
x+ L before x− L obeys

D
d2

dx2
P+(x)−Dβ d

dx
φ(x)

d

dx
P+(x) = 0, (2.79)

(8)Exercise - do the straightforward but tedious algebra to show Eq. (2.78)
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this has the solution(9) P+(x) = 1/2, so the discrete random walk so constructed is un-
biased. Physically this has to be true but the maths is reassuring! We can actually use
the mean first passage time distribution to compute the effective diffusion constant in this
system. If the discrete random walk takes N steps during the time t is has a MSD (started
from the origin)

E(X2
t ) = L2N. (2.80)

However N × t(L) = t, the number of jumps made times the average time to jump must
equal the total time (at late times) and so

E(X2
t ) = L2 t

t(L)
= 2Det, (2.81)

thus the effective diffusion constant De is given by

De =
L2

2t(L)
=

D
1
L

∫ L
0 dz exp (βφ(z)) 1

L

∫ L
0 dz exp (−βφ(z))

. (2.82)

This result can be written in terms of the spatial averages

〈exp (±βφ(z))〉s =
1

L

∫ L

0
dz exp (±βφ(z)) , (2.83)

to give

De =
D

〈exp (βφ)〉s〈exp (−βφ)〉s
. (2.84)

Using Jensen’s inequality one can show that De < D so the diffusion is alway slowed
down by the presence of a potential (10) - this is due to the trapping in the minima of the
potential. It is also amusing to note that the effective diffusion constant in the potential φ
is identical to that in the inverted potential −φ.

Using the expression for the MPFT Eq. (2.78) we can analyse what happens at low
temperature. This means that β is large and so the integral

I− =

∫ L

0
dz exp (−βφ(z)) (2.85)

can be approximated about its minimal value occurring at zmin (assuming it is unique).
To do the integral we write z = zmin + ζ and Taylor expand about zmin to get

I− ≈
∫ L

0
dζ exp

(
−βφ(zmin)− β

2
φ′′(zmin)ζ2

)
≈

∫ ∞
−∞

dζ exp

(
−βφ(zmin)− β

2
φ′′(zmin)ζ2

)
=

√
2π

βφ′′(zmin)
exp (−βφ(zmin)) .(2.86)

(9)Exercise - prove this
(10)Exercise - find out what Jensen’s inequality is and use it to prove De < D
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The same method of calculation estimates I+ from the contribution of the maximum of φ
at the point zmax and gives

I+ ≈

√
2π

β|φ′′(zmax)|
exp (βφ(zmax)) . (2.87)

We thus obtain the Arrhenius law for thermally activated energy barrier crossing

t(L) ≈ τ0 exp(β∆φ), (2.88)

where ∆φ = φ(zmax)− φ(zmin) is the biggest energy barrier the particle has to cross. The
factor τ0 is a time scale given by

τ0 =
2π

Dβ

1√
φ′′(zmax)|φ′′(zmax)|

, (2.89)

we see that it depends on the details of the dynamics, the temperature, and the local
curvature of the potential at the absolute maximum and minimum. At low temperatures
the particle spends all its time trying to cross the barrier and the result becomes essentially
independent of L.
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Chapter 3

Diffusion in media with variable
diffusivity

Here we consider the effective diffusivity of media with a locally varying diffusion constant
D(x) containing tracer particles which diffuse according to the diffusion equation

∂

∂t
p(x; t) = ∇D(x) · ∇p(x; t). (3.1)

The most important transport coefficients in heterogeneous media are the effective drift
Ve determined from the mean displacement

Ex0(Xt − x0) ∼ Vet. (3.2)

For large t and for isotropic systems the effective diffusion constant De is given by the
dispersion about the mean displacement

Ex0
(
(Xt − x0)2

)
− [Ex0(Xt − x0)]2 ∼ 2dDet. (3.3)

For systems which are not isotropic (say layered systems), the effective diffusion is charac-
terized by an effective diffusion tensor Deij . The effective diffusion tensor takes the form
Deij = Deδij when the system has a rotational invariance in the statistical sense. This
means that at late times and seen on large length scales, a diffusing cloud of particles
moves with average velocity Ve while its size increases as

√
Det. If we consider a periodic

system, where D(x) is periodic over a unit cell Ω, and consider a steady states situation
for the distribution of X modulo Ω, we can show that the drift in this problem should be
zero. Integrating the Ito SDE Eq. (2.57) for the process described by Eq. (3.1) we find
the mean displacement to be

Xt − x0 =

∫ t

0
ds ∇D(Xs) +

∫ t

0
dBs

√
2D(Xs); (3.4)
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upon taking the average this gives

E(Xt − x0) =

∫ t

0
ds E(∇D(Xs)). (3.5)

However, D just depends on the position of X modulo the periodic cell Ω which we denote
as Y and we assume that Y is in equilibrium. In terms of the process Y we have

E(Xt − x0) =

∫ t

0
ds E(∇D(Ys)) (3.6)

The Forward Fokker-Planck equation for Y is the same as for X except that is is restricted
to Ω and has periodic boundary conditions. The steady state distribution is constant
ps(y) = 1/|Ω| and using this the gives

E(Xt − x0) =

∫ t

0
ds

∫
Ω
dyps(y)∇D(y) =

∫ t

0
ds

1

Ω

∫
Ω
dy∇D(y) = 0 (3.7)

by periodicity. For a general SDE of the form Eq. (2.49), if the local diffusivity and drift
are periodic on a unit cell Ω and we assume we start with X modulo Ω in the steady state
with distribution ps(y) on Ω, the mean displacement is given by

E(Xt − x0) = Vet, (3.8)

for all times t, where the effective drift is given by

Ve =

∫
Ω
dy ps(y)u(y). (3.9)

Clearly in an isotropic system the effective drift is 0 as there is no preferred direction.

3.1 Links with electrical and porous media

The computation of the effective diffusion constant is greatly simplified by considering
the link with a number of old, but important, physics, problems. Consider an isotropic
dielectric medium with dielectric constant ε(x) which varies in space. A well studied
example of such a dielectric medium is one of a background medium with dielectric constant
ε, containing dielectric spheres of dielectric constant ε′ placed randomly (having an isotropic
distribution) in the medium.

The effective dielectric constant is defined as follows, applying an electric potential
across the medium generates an average electric field

〈E〉s =
1

V

∫
dx E(x), (3.10)
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the effective dielectric constant is then defined via

εe〈E〉s = 〈ε(x)E(x)〉s. (3.11)

The full computation of εe requires using the existence of the electric potential

E(x) = −∇φ(x), (3.12)

and Poisson’s equation in a dielectric medium

∇ ·D = 0, (3.13)

where D(x) = ε(x)E(x) is the electric displacement. Mathematically identical problems
include the computation of the effective conductivity of a heterogeneous conductor with
local conductivity σ(x). It is determined via the relation

σe〈E〉s = 〈σ(x)E(x)〉s, (3.14)

here again
E(x) = −∇φ(x), (3.15)

and Ohms law gives the electric current as j(x) = σ(x)E(x). In the steady state, charge
conservation gives

∇ · j = 0. (3.16)

Finally the effective permeability of a porous media with respect to incompressible fluid
flow is defined via

κe〈∇P 〉s = 〈κ(x)∇P (x)〉s, (3.17)

where κ(x) is the local permeability of the medium, related to the pore sizes and their
geometries in rocks, and P is the local pressure. The velocity field of the fluid flow in
the steady state is given by Darcy’s law (which is phenomenological and supported by
measurements on water bearing rocks in aquifers and oil bearing rocks in oil reservoirs)

u = κ(x)∇P (x), (3.18)

and the final equation comes from the incompressibility of the fluid flow

∇ · u = 0. (3.19)

These are all static problems while the problem of diffusion is clearly time dependent.
However it can be shown that De is given by

De〈∇p〉 = 〈D(x)∇p(x)〉s, (3.20)

where p(x) obeys
∇ ·D(x)∇p(x). (3.21)
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This steady state diffusion problem corresponds to applying a concentration gradient across
the medium, it relates the concentration gradient to the current via

De〈∇p〉 = −〈J〉, (3.22)

where J(x) = −D(x)∇p(x). As all these problems are mathematically equivalent, if you
can solve one you can solve them all.

3.2 Diffusion with variable diffusivity in one dimension

In one dimension the steady state equation

d

dx
D(x)

d

dx
p(x) = 0 (3.23)

has the simple first integral

D(x)
d

dx
p(x) = −J (3.24)

where the current J is constant, this means that

〈D d

dx
p〉s = −J (3.25)

but also

〈 d
dx
p〉s = −J〈D−1〉 (3.26)

Now using Eq. (3.20) gives

De〈
d

dx
p〉s = −JDe〈D−1〉s = 〈D d

dx
p〉s = −J, (3.27)

and so
De = 〈D−1〉−1

s , (3.28)

the average on the right hand side above is the harmonic mean of the local diffusivity D(x).

3.3 Wiener bounds

The effective diffusion constant, in any dimension d, is constrained by the Wiener bounds

〈D−1〉−1
s ≤ De ≤ 〈D〉s. (3.29)

we thus see that in one dimension the lower Wiener bound gives the exact result.
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3.4 Exact result in two dimensions

The general solution of the steady state diffusion equation

∇ ·D(x, y)∇p(x, y) = 0 (3.30)

can be written in terms of another function p′(x, y) via

D(x, y)∇p(x, y) = D(x, y)

( ∂
∂xp(x, y)
∂
∂yp(x, y)

)
= D0

(
− ∂
∂yp
′(x, y)

∂
∂xp
′(x, y)

)
, (3.31)

this can be rearranged to give

D′(x, y)∇p′(x, y) = D′(x, y)

( ∂
∂xp
′(x, y)

∂
∂yp
′(x, y)

)
= D0

( ∂
∂yp(x, y)

− ∂
∂xp(x, y)

)
, (3.32)

where D′(x, y) = D2
0/D(x, y). So we see that p′ also obeys a steady state diffusion equation

∇ ·D′(x, y)∇p′(x, y) = 0. (3.33)

Now consider the case where D′(x, y) ≡ D(x, y), that is to say the are statistically equiv-
alent or are the same fields up to a translation; this means that we mus have De = D′e.
Taking the spatial averages of Eqs. (3.31) and (3.32) gives

De

(
〈 ∂∂xp(x, y)〉s
〈 ∂∂yp(x, y)〉s

)
= D0

(
−〈 ∂∂yp

′(x, y)〉s
〈 ∂∂xp

′(x, y)〉s

)
, (3.34)

and

De

(
〈 ∂∂xp

′(x, y)〉s
〈 ∂∂yp

′(x, y)〉s

)
= D0

(
〈 ∂∂yp(x, y)〉s
−〈 ∂∂xp(x, y)〉s

)
. (3.35)

The only way in which these two equations can be satisfied together is if De = D0
(1). As

an example consider the case where D = D0 exp (−βφ(x, y)) where φ is a Gaussian random
field of zero mean (a non-zero mean can however be trivially absorbed into the definition
of D0), with a correlation function which is isotropic

〈φ(x)φ(y)〉 = ∆(x− y), (3.36)

if the correlation function is short range the effective diffusion constant is self averaging
in the sense that the diffusion samples all realizations of the field φ after sufficiently long
times and is thus independent of the realization of the field φ. Clearly the field φ has the
same statistics as the field −φ and so D0 exp(−βφ) ≡ D0 exp(βφ) and so here we have
D′ = D2

0/D ≡ D and consequently
De = D0. (3.37)

(1)Exercise - prove this

23



As another example, consider a checkerboard material with diffusivity D1 in the black
squares and D2 on the white squares. It is not obvious that the diffusion tensor takes the
isotropic form Deij = Deδij , however if one diagonalizes the diffusion tensor it will take
the form

De =

(
λ 0
0 µ

)
, (3.38)

however a rotation by π/2 must give the same diffusion tensor and thus λ = µ and so
Deij = Deδij (this argument applies to any system repeated over a square lattice). Using
the duality result one can show that(2) De = D0 =

√
D1D2.

3.5 Links between diffusion with varying diffusivity and dif-
fusion in a potential

There is a remarkable link between diffusion in a potential and diffusion in a medium of
varying diffusivity. Consider a medium where D(x) = D0 exp (−βφ(x)), in terms of the
potential φ the Ito SDE is

dXt =
√

2D0 exp (−βφ(Xt))dBt −D0β exp (−βφ(Xt))∇φ(Xt)dt. (3.39)

The MSD for this diffusivity problem is defined by

E
(
(Xt − x0)2

)
∼ 2dDdif

e t. (3.40)

Now consider the introduction of a new random time defined by

τ =

∫ t

0
exp (−βφ(Xs)) ds, (3.41)

and measure the time for the process X in terms of τ , this gives

dXτ =
√

2D0dBτ −D0β∇φ(Xτ )dτ. (3.42)

This is true because trivially
dτ = exp (−βφ(Xt)) dt. (3.43)

Less trivially
[dBτ ]2 = dτ = exp (−βφ(Xt)) dt, (3.44)

but on the other hand we see

[
√

exp (−βφ(Xt))dBt]
2 = exp (−βφ(Xt)) dt = [dBτ ]2. (3.45)

(2)Exercise - prove this
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The diffusivity process when written in terms of the random time variable τ is a process
diffusing in a potential φ at inverse temperature β with a bare diffusion constant D0. This
means that

E
(
(Xτ − x0)2

)
∼ 2dDpot

e E(τ), (3.46)

where Dpot
e denotes the effective diffusion constant for diffusion in a potential. There is

an average value E(τ) on the right hand side because τ is random. However the original
process Xt modulo the period has a uniform distribution in the steady state over the unit
cell, this means for large times we have

E(τ) = E(

∫ t

0
exp (−βφ(Xs)) ds) ∼ t〈exp (−βφ(x))〉s, (3.47)

and so, comparing equations (3.41) and (3.46),we find

Dpot
e 〈exp (−βφ(x))〉s = Ddif

e . (3.48)

Using this results we immediately recover the result Eq. (2.84) for the diffusion constant
in a one dimensional potential from the much easier calculation of the diffusion constant
of a medium with variable diffusivity. However in the case of potentials such that φ ≡ −φ
we can use Eq. (3.48) and Eq. (3.37) to obtain the effective diffusion constant in, a class
of, two dimensional random potentials as

De =
D0

〈exp (−βφ(x))〉s
. (3.49)

If the potential φ is Gaussian of zero mean with correlation function having a finite corre-
lation length ξ, for instance

∆(x) = exp(−|x|
ξ

), (3.50)

we can approximate the spatial average in the denominator of Eq. (3.49) by the ensemble
average (3) which only depends on ∆(0) to obtain

〈exp (−βφ(x))〉s =

∫
dφ

1√
2π∆(0)

exp

(
− φ2

2∆(0)

)
exp (−βφ) = exp

(
β2∆(0)

)
, (3.51)

and so

De = D0 exp

(
−β

2

2
∆(0)

)
, (3.52)

the appearance of β2 in the exponential above is called super-Arrhenius behavior. It is
quite surprising that this result only depends on the correlation function of the random
field at coinciding points and not the full functional form.

(3)Exercise prove this by showing computing the variance of the random variable X = 〈exp (−βφ(x))〉s −
〈exp (−βφ(x))〉 for a large system of area A, how quickly does ∆(x) have to decay for it to be true?
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If one takes a Gaussian random potential in one dimension, Eq. (2.84) yields the
effective diffusion coefficient

De = D0 exp
(
−β2∆(0)

)
. (3.53)

3.6 Dynamical transition in squared Gaussian potentials

Interestingly one can use this result to demonstrate the existence of a dynamical transition
in two dimensions in the case where, among other models, the potential φ is given by

φ(x) =
α

2
ψ2(x)− α

2
ψ′2(x), (3.54)

where ψ and ψ′ are Gaussian random fields with the same distribution (models with ef-
fective potentials which are Gaussian squared occur for the diffusion of dipoles in random
electric fields and for models of the glass transition). Clearly by construction φ ≡ −φ and
so we can use our previous results to show

De =
D0

〈exp
(
βα
2 ψ
′2(x)− βα

2 ψ
2(x)

)
〉s
. (3.55)

As before, for a short range isotropic correlation function, for the fields ψ and ψ′, we can
approximate the spatial average in the denominator of Eq. (3.55) by the ensemble average
to obtain

〈exp

(
βα

2
ψ′2(x)− βα

2
ψ2(x)

)
〉s =

∫∫
dψdψ′

2π∆(0)
exp(− 1

2∆(0)
ψ′2− 1

2∆(0)
ψ2+

βα

2
ψ′2−βα

2
ψ2).

(3.56)
The integral over ψ′ diverges when βα > 1/∆(0) and so the diffusion constant vanishes in
the low temperature phase β > βc = 1/(α∆(0)). For β < βc we find(4)

De = D0(1− β

βc
)
1
2 (1 +

β

βc
)
1
2 . (3.57)

Near the transition temperature Tc, the diffusion constant vanished as De ∼ (T − Tc)
1
2 .

Below Tc the diffusion is anomalous and sub-diffusive, the MSD behaves as tα, where α 6= 1
(hence the term anomalous) and where α < 1 (hence the term sub-diffusive).

A useful application of the relationship Eq. (3.48) is that the diffusion in a potential
at low temperatures, especially near a dynamical transition from diffusion to sub-diffusion,
obviously becomes very slow and as a particle must diffuse a large distance, the order of a
few correlation lengths, to sample the potential and attain its asymptotic value simulations
must be run for a very long time. However if one simulates the related diffusivity problem,
the dynamics is much faster as there is no trapping in the diffusivity problem (the steady
state distribution is uniform). The link between the diffusivity and potential problem is
not widely known and has not really been exploited in numerical simulations.

(4)Exercise - prove this
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⌦
D0

D1

Figure 3.1: Discs of diffusivity D1 arranged on a square lattice in a background medium
of diffusivity D0

3.7 The Maxwell formula for diffusion in systems with spher-
ical inclusions

Consider a system with a uniform background of diffusivity D0 with spherical inclusions
of radius R having diffusivity D1. The spheres can be arranged on a regular lattice for
example as shown in Fig. (3.1), or randomly (and may or may not overlap). The precise
packing of the spheres will influence the effective diffusivity. However for dilute systems,
where the density of spheres per unit volume is small, the correlations between sphere
positions do not contribute to first order in the density. The basic idea is that we carry
out the computation of the average current for a single sphere in a finite volume Ω, where
the coordinate origin is taken to be at the center of the sphere. Away from the surface of
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the spherical inclusion the, steady state diffusion equation

∇ ·D(x)∇p(x) = 0 (3.58)

becomes
∇2p(x) = 0. (3.59)

Integrating Eq. (3.58) over an infinitesimal pillbox lying either side of the spheres’s surface
(exactly as one does in electrostatics) gives the boundary condition

D(x)n · ∇p(x)||x|=R+ = D(x)n · ∇p(x)||x|=R− , (3.60)

where R± denotes values infinitesimally smaller/greater than R and n is the unit vector
normal to the sphere’s surface. As ∇p must have a non-zero average value we must have

∇p ∼ u for |x| → ∞, (3.61)

where u is constant. The mathematical problem is equivalent to that of a dielectric sphere
in a uniform applied electric field, and you have probably seen it before in this context.
The general solution outside the sphere is

p(x) = u · x + pe(x), (3.62)

where pe(x)→ 0 as |x| → ∞ is a solution to ∇2pe = 0 . Inside the sphere

p(x) = u · x + pi(x), (3.63)

where ∇2pi = 0 and pi remains finite as |x| → 0. In d dimensions the general solution is
given by

p(x) = u · x +Au·∇ 1

rd−2
= u · x−A(d− 2)u· x

rd
, (3.64)

where r = |x| and have used, that for r > 0,

∇2 1

rd−2
= 0. (3.65)

Matching the solution at |x| = R shows that pi must have the form

pi(x) = Bu · x. (3.66)

Continuity of the solution at |x| = R gives

1− (d− 2)
A

Rd
= B. (3.67)

We now note that

∇ip = ui +Auj∇i∇j
1

rd−2
= ui −

A(d− 2)

rd
uj

[
δij − d

xixj
r2

]
, (3.68)
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and using this in Eq. (3.60) gives

B = 1− (d− 1)(d− 2)
A

Rd
. (3.69)

The solution of these two equations is

A = Rd
[

(D1 −D0)

(d− 2) (D1 + (d− 1)D0)

]
(3.70)

B =
dD0

(D1 + (d− 1)D0)
. (3.71)

We now compute

〈∇p〉s =
1

Ω

∫
Ω
dx∇p(x)

= u(1− Vd(R)

|Ω|
+B

Vd(R)

|Ω|
), (3.72)

where Ω is the volume containing the sphere and Vd(R) the volume of the sphere of radius
R in d dimensions. The integrals in the exterior region proportional to A turn out to be
zero from isotropy. Similarly

〈D∇p〉s =
1

Ω

∫
Ω
dxD(x)∇p(x)

= u(D0[1− Vd(R)

|Ω|
] +BD1

Vd(R)

|Ω|
). (3.73)

Now using Eq. (3.20) yields

De(1− c+Bc) = D0(1− c) +BD1c, (3.74)

where c = Vd(R)/|Ω| is the volume fraction of the spheres. Solving this then gives

De = D0
α+ d− 1 + c(d− 1)(α− 1)

α+ d− 1− c(α− 1)
, (3.75)

where α = D1/D0. For d = 3 the above is the classical result of Maxwell for a system of
dielectric spheres. The expression is only technically correct to O(c), at order c2 the precise
distribution of the spheres, not just the volume fraction, should intervene. Having said
that the Maxwell formula works pretty well up to unreasonably large densities for a wide
range of dielectric/diffusivity contrasts. Computing the dielectric and electric properties of
systems of metamaterials is becoming increasingly important as today one can build quite
elaborate systems and design their optical properties via both the choice of materials in
the composite and the geometries employed.
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3.8 Diffusion in a system of hard spherical obstacles

A system of hard spherical obstacles can be obtained by choosing a potential φ(x) which
is zero outside the spheres and takes the value ε inside the spheres, taking the limit ε→∞
then ensures that the particles are excluded from the volume occupied by the spheres. If
we consider a diffusivity problem where D(x) = D0 exp(−βφ(x)) we obtain α = exp(−βε).
We also have that

〈exp(−βφ)〉s = 1− c+ cα (3.76)

and so using the link between the diffusivity and potential problem Eq. (3.48) and the
diffusion constant for the particle is given by

Dpot
e =

α+ d− 1 + c(d− 1)[α− 1]

[α+ d− 1− c(α− 1)][1− c+ cα]
. (3.77)

In the limit of hard spheres (HS) α→ 0 and we find

DHS
e =

1

1 + c
d−1

≈ 1− c

d− 1
. (3.78)
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Chapter 4

Perturbation methods for systems
with random drift

Here we consider the the diffusivity in systems where a tracer is transported due to a
constant molecular, or bare, diffusivity and advection due to a random drift λu(x, t) which
can depend on time. The term λ is a parameter which is assumed to be small and that will
be used to generate a perturbation expansion for the effective diffusivity about the bare
value D0. The SDE is given by

dXt = λu(Xt)dt+
√

2D0dBt. (4.1)

The Fokker-Planck equation for a particle started at x = 0 at t = 0 (we can take x = 0
without loss of generality is a statistically homogeneous system) can be written as

∂

∂t
p(x, t) = D0∇2p(x, t)− λ∇ · [u(x, t)p(x, t)] + δ(x)δ(t). (4.2)

The delta function at t = 0 creates the initial condition p(x, 0) = δ(x) for the diffusion
equation in the time region t > 0. The space-time Fourier transform of the solution to the
Fokker-Planck equation is defined by

p̃(k, ω) =

∫ ∞
−∞

dt exp(−iωt)
∫
dx exp(−ik · x)p(x, t). (4.3)

Using the inverse Fourier transform representation for p(x, t)

p(x, t) =

∫ ∞
−∞

dω

2π
exp(iωt)

∫
dk

(2π)d
exp(ik · x)p̃(k, ω) (4.4)

and the corresponding result for u, and also noting the identity∫ ∞
−∞

dx exp(ipx) = 2πδ(p), (4.5)
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taking the space-time Fourier transform of Eq. (4.2) gives(1)

iωp̃(k, ω) = −D0k
2p̃(k, ω)− iλ

∫
dνdq

(2π)d+1
k · ũ(q, ω − ν)p̃(k− q, ν) + 1, (4.6)

which can be written as

p̃(k, ω) = p̃0(k, ω)− iλp0(k, ω)

∫
dνdq

(2π)d+1
k · ũ(q, ν)p̃(k− q, ω − ν), (4.7)

where

p̃0(k, ω) =
1

D0k2 + iω
, (4.8)

is called the free-diffusion propagator (2) - it is the solution of Eq. (4.6), when λ = 0 and
is the solution about which the perturbation theory is constructed. In a system which has
an effective diffusion constant (but we will restrict ourselves to cases where the effective
drift Ve = 0) the solution to the Fokker-Planck equation for large t and x should have the
normal diffusive form but with an effective diffusion equation. In Fourier space this means

p̃(k, ω) ∼ 1

Dek2 + iω
for k, ω → 0, (4.9)

from which we see that De can be read off from the static (ω = 0) part of the diffusion
propagator via

p̃(k, 0) ∼ 1

Dek2
for k → 0. (4.10)

4.1 Non-averaged perturbation theory

Here we develop a perturbation expansion for the solution of the diffusion equation for an
arbitrary realization of the drift u. The perturbation theory is developed diagrammatically
using Feynman diagrams. We represent the free diffusion propagator p̃0(k, ω) as a line
with a four-momentum K = (k, ω) flowing through it as shown in Fig. (4.1), while the full
propagator p̃(k, ω) is shown using a thick line as in (4.2).

The Eq. (4.7) for the full diffusion propagator p̃(k, ω) is represented diagrammatically
in Fig. (4.3). The Feynman diagram of the vertex interaction represented by the second
term on the right hand side of Eq. (4.7) is the second diagram on the right hand side of
Fig. (4.3). The squiggly line represents −iλk · ũ(Q)/(2π)d+1 - (the scalar product is of ũ
the upward momentum leaving the vertex with k the incoming spatial or three momentum)
and the upward four moment Q is integrated over. Notice that the total four momentum

(1)Exercise - prove this
(2)Exercise - invert the Fourier transform and show that it yield the solution p0(x, t) =

exp(−x2/(4D0))/(4πD0t)
d
2 for t > 0, what happens for t < 0?
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Figure 4.1: Feynman diagram representation of free diffusion propagator

Figure 4.2: Feynman diagram representation of full diffusion propagator

is conserved, we have K flowing in and Q flowing up and out through the squiggly line and
K−Q flowing out through the thick line. Think of the propagators as a hose pipe in a
garden watering system, the squiggly lines are open irrigation pipes through which (water)
four-momentum can leave or enter the main hosepipe.

Iterating the equation expressed by Fig. (4.3) generates what is called a Neumann
expansion for the full propagator and yields to O(λ4) the diagrams shown in Fig. (4.4).

4.2 Disorder averaged perturbation theory

To proceed we assume that the effective diffuse constant is self averaging and that it can be
read off from the disorder averaged propagator 〈p(k, ω)〉. We will assume that the field u
is Gaussian with zero mean and with a short-range correlation function, which is invariant
under translations in space and time, given by

〈ui(x, t)uj(x′, t′)〉 = Cij(x− x′, t− t′). (4.11)
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Figure 4.3: Feynman diagram representation of Eq. (4.7).

From this is is easy to see that the correlation function of the Fourier transform of the drift
field is given by

〈ui(k, ω)uj(k
′, ω′)〉 = (2π)d+1δ(k + k′)δ(ω + ω′)C̃ij(k, ω). (4.12)

In four vector notation this looks simpler and reads

〈ũi(K)ũj(K
′)〉 = (2π)d+1δ(K + K′)C̃ij(K), (4.13)

where K = (k, ω). If we write

p̃(K) = p̃0(K) + p̃1(K) + p̃2(K) + p̃3(K) + p̃4(K) + · · · , (4.14)

where pn(K) denotes the terms O(λn) we can carry out the averaging term by term. Clearly
〈p1(K)〉 = 0 and 〈pn(K)〉 = 0 for any n which is odd as u is on average zero because there
is a statistical symmetry associated with u→ −u. The first non-zero term, on average, for
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Figure 4.4: Diagrammatic expansion of p(k, ω) obtained from solving Eq. (4.7)

n > 1 is the term

〈p2(K)〉 = (−iλ)2p0(K)

∫
dQdQ′

(2π)2d+2
ki(kj − qj)C̃ij(Q)(2π)d+1δ(Q + Q′)p0(K−Q)p0(K−Q−Q′)

= (−iλ)2p0(K)

∫
dQ

(2π)d+1
ki(kj − qj)C̃ij(Q)p0(K−Q)p0(K). (4.15)

We see that taking the average imposes that Q the four momentum leaving the first vertex
is equal to −Q′ the four momentum leaving the second vertex. In terms of the irrigation
picture it means that rather than flowing out of the main hose pipe and being lost, the four
momentum flows back in at the next vertex. Diagrammatically this shown in Fig (4.5), the
irrigation hose pipe connecting the two vertices in the main hosepipe, shown as a dashed
line, along with the main part of the hosepipe below it, carries a factor of

(−iλ)2

∫
dQ

(2π)d+1
ki(kj − qj)C̃ij(Q)p0(K−Q) (4.16)

The average value of the O(λ4) term 〈p̃4(k, ω)〉 (without the four momenta shown) is
shown in Fig (4.6). Note that all the diagrams in Fig. (4.6) factorize and the first factorizes
twice, such terms can be resummed. Diagrams that do not factorise in this way are called
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Figure 4.5: Order λ2 contribution to 〈p(k, ω)〉 = 〈p2(k, ω)〉.

one particle irreducible diagrams (a terminology coming from particle physics). The full
propagator can thus be written as a geometric series

p̃(K) = p0(K) + p0(K)Σ(K)p0(K) + p0(K)Σ(K)p0(K)Σ(K)p0(K) + · · ·

=
p0(K)

1− Σ(K)p0(K)
=

1

p−1
0 (K)− Σ(K)

(4.17)

where Σ(K) is the sum of one-particle irreducible diagrams. The first two terms in the
perturbation expansion for Σ(k) are shown in Fig (4.7). Examining Eq. (4.10) shows that
the effective diffusion constant can be deduced from Σ(k) via

De = D0 − lim
k→0

Σ(k, 0)

k2
. (4.18)

The term Σ2(K) is given by Eq. (4.19) and so

Σ2(k, 0) = (−iλ)2

∫
dqdν

(2π)d+1

ki(kj − qj)C̃ij(q, ν)

D0(k− q)2 − iν
(4.19)

To extract the diffusion constant requires some additional assumptions. Firstly the
correlation function transform C̃ij(K) must have a tensorial structure which is determined
by the symmetries of the random field. If we look at quenched random fields, that do not
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Figure 4.6: Order λ4 contribution to 〈p(k, ω)〉 = 〈p4(k, ω)〉.

depend on time, such as frozen random potentials of steady state random fluid flows, we
can write that in general

C̃ij(q, ν) = (2π)δ(ν)
[
qiqi∆̃P (q) + [q2δij − qiqj ]∆̃I(q)

]
(4.20)

The contribution proportional to ∆̃P comes from a drift uP created by a random potential
φP , where as the term proportional to ∆̃I comes from an independent incompressible
fluid flow uI . Note that both the correlation functions ∆̃I and ∆̃P must be positive for
the correlation function given to correspond to a real Gaussian process - the correlation
tensor function must be positive definite. The tensor structure ensures that the flow is
divergence-less, which in Fourier space reads q · ũI(q) = 0. This gives a contribution

Σ2P (k, 0) = −λ2

∫
dq

(2π)d
ki(kj − qj)qiqj∆̃P (q)

D0(k− q)2
(4.21)

coming from the potential. We now use that for small k

ki(kj − qj)qiqj
(k− q)2

≈ kikjqiqj
q2

− kiqiq
2

q2
(1 +

2qkkk
q2

) = −kikjqiqj
q2

− kiqi. (4.22)
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Figure 4.7: Order λ2 and λ4 contribution to Σ(K)

The last term gives no contribution to the integral in Eq. (4.21) as it is odd in qi and the
remaining O(k2) contribution to the integral is given by

Σ2P (k, 0) = kikj
λ2

D0

∫
dq

(2π)d
∆̃P (q)

qiqj
q2

. (4.23)

The integral

Iij =

∫
dq

(2π)d
∆̃P (q)

qiqj
q2

(4.24)

is clearly proportional to δij , i.e. Iij = δijR, summing over i = j in d dimensions then
gives

Iii = dR =

∫
dq

(2π)d
∆̃P (q)

q2

q2
= ∆P (0), (4.25)

(remember than with the Einstein summation convention Iii =
∑d

i=1 Iii) and therefore

Σ2P (k, 0) = k2 λ2

D0d
∆P (0), (4.26)
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when ∆P (0) is finite and hence, if there is only the potential term present,

De = D0(1− λ2

D2
0d

∆P (0)). (4.27)

To this level in perturbation theory we see that the effective diffusion constant for diffusion
in a random potential only depends on the potential’s correlation function at coinciding
points - this is in agreement with the exact results we have obtained earlier (setting λ = D0β
via the Stokes-Einstein relation) in one [Eq. (3.53)] and two [Eq. (3.52)] dimensions. The
effect of the potential is to slow down diffusion with respect to the bare diffusion constant.
A similar calculation(3) shows that the term coming from the incompressible part of the
velocity field yields

Σ2I(k, 0) = k2 λ
2

D0
(1− 1

d
)

∫
dq

(2π)d
∆I(q) = −k2 λ

2

D0
∆I(0)(1− 1

d
), (4.28)

thus for a purely incompressible field we find

De = D0(1 +
λ2

D2
0

∆I(0)[1− 1

d
]), (4.29)

when ∆I(0) is finite. Purely incompressible flow thus increases the effective diffusivity -
this is physically because there is no trapping and the tracer is convected by the flow. For
both the potential and incompressible case the perturbation theory diverges badly in the
limit D0 → 0. We know that when D0 = 0 there is no diffusion, the tracer just stays at
a local minimum. However the incompressible flow generates an effective diffusivity even
in the absence of a bare or molecular diffusivity (as can be seen in numerical simulations).
As the perturbation theory builds up to corrections to De as a power series in λ2 we see
that writing Eq. (4.29) as

De = D0 +
λ2

De
∆I(0)[1− 1

d
]), (4.30)

is also correct to O(λ2). This idea can be justified more rigorously and is an example of
self consistent perturbation theory. The idea is to do perturbation theory about the free
propagator with the effective self diffusion constant rather than the bare one, this formalism
can be pushed to higher orders in perturbation theory. In Eq. (4.30) we can set D0 = 0
and obtain

De = λ

√
∆I(0)[1− 1

d
]), (4.31)

this simple result actually works remarkably well when compared to numerical simulations
in d = 3. The expressions for the O(λ4) terms Σ4 can be written down easily (4), however
the resulting integrals often need to be evaluated numerically.

(3)Exercise- do the calculation
(4)Exercise - Give the integral expressions for Σ4(k, ω) in terms of C̃ij , don’t try and evaluate the integrals
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Note that the integrals

∆P/I(0) =

∫
dq

(2π)d
∆P/I(q), (4.32)

may not exist due to long range correlations (which correspond to divergences at small
q), in this case the diffusion constant diverges and this signals that the diffusion becomes
anomalous, that is to say

E(X2
t ) ∼ tα (4.33)

where α 6= 1. Systems where α < 1 are called sub-diffusive, while the case α > 1 us called
super-diffusive. In many cases the exponent α can be computed using renormalisation
group techniques.

40


