

The problem: Rheology of dispersions		
Effective viscosity for a dilute dispersion with particle volume fraction $_{\phi}$ $\mu_{ m eff}= au/\dot{\gamma}=\mu_0 \left(1+\phi\eta^d ight)$		
• suspension of rigid spheres Einstein (1905)	Newtonian	$\eta^{d} = \frac{5}{2}$
drop deformation? surfactant? Interfacial viscosity?	Non-Newtonian	?
• emulsion of spherical "clean" of G.I.Taylor (1934)	drops Newtonian	$\eta^{d} = \frac{1 + \frac{5}{2}\lambda}{1 + \lambda}$
		λ viscosity ratio 20

Lecture 1: intro, complex fluids properties, complex fluids as continuum, effective viscosity

Lecture 2: equations,, stress tensor, nondimensionalization Lecture 3: Stokes flow: basic properties, fundamental solutions, stresslet Lecture 4: Rheology of dispersions of soft particles: examples

Microhydrodynamics of soft particles Petia M. Vlahovska, Brown university Lecture 2: Fundamentals of Viscous Fluid Dynamics

The fluid as continuum. Conservation of mass and momentum Reynolds Transport Theorem

$$\frac{D}{Dt} \int_{V} \rho \psi dV = \frac{\partial}{\partial t} \int_{V} \rho \psi dV + \int_{S} \rho \psi \mathbf{u} \cdot \mathbf{n} dS = \int_{V} \left(\frac{\partial}{\partial t} \left(\rho \psi \right) + \nabla \cdot \left(\rho \psi \mathbf{u} \right) \right) dV \tag{1}$$

For mass $\psi = 1$, for linear momentum $\psi = \mathbf{u}$, for angular momentum $\psi = \mathbf{r} \times \mathbf{u}$.

a). continuity equation $\frac{D}{Dt} \int_V \rho dV = 0$

b). linear momentum conservation: $\frac{D}{Dt} \int_V \rho \mathbf{u} dV = forces$; body and surface forces; stress tensor (need constitutive law relating stress to velocity)

2 Stress: constitutive laws

a) conservation of angular angular momentum: show that if there are no couples (torques) \implies stress tensor is symmetric. Example of a fluid with non-symmetric stress tensor: ferrofluid b) Newtonian fluid: linear relation between stress and velocity field (constitutive law). Stress tensor is symmetric.

$$\mathbf{T} = (-p + (\kappa + 2/3\mu)\nabla \cdot \mathbf{u})\mathbf{I} + 2\mu\mathbf{E}$$

 κ is bulk viscosity, μ is shear viscosity, **E**: rate-of-strain tensor, It is symmetric and traceless, $\mathbf{E} = [\nabla \mathbf{u}]^{sym}, E_{ij} = 1/2 \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} - \frac{2}{3} \frac{\partial v_i}{\partial x_i} \delta_{ij} \right).$ Note that $Tr(\mathbf{E}) = \left(\frac{\partial v_i}{\partial x_i} + \frac{\partial v_i}{\partial x_i} - \frac{2}{3} \frac{\partial v_i}{\partial x_i} \delta_{ii} \right) = 0$ $(\delta_{ii} = 3)$

 $\bar{p} = -1/3Tr(\mathbf{T}) = p - (\kappa + 2/3\mu)\nabla \cdot \mathbf{u}; \ \bar{p}$ is the mechanical pressure

c) Equation of motion for an incompressible, Newtonian fluid: Navier-Stokes equations

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \rho \mathbf{g} + \mu \nabla^2 \mathbf{u} \quad \nabla \cdot \mathbf{u} = 0$$
⁽²⁾

 $P = p - \rho g z$ - dynamic pressure, usually the ρg term absorbed in the pressure

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla P + \mu \nabla^2 \mathbf{u} \quad \nabla \cdot \mathbf{u} = 0$$
(3)

3 Nondimensionalization

$$\tilde{\mathbf{u}} = \frac{\mathbf{u}}{U}, \quad \tilde{\mathbf{x}} = \frac{\mathbf{x}}{L}, \quad \tilde{p} = \frac{p}{p_c}, \quad \tilde{t} = \frac{t}{t_c}$$

$$Re\left(\frac{1}{St}\frac{\partial\tilde{\mathbf{u}}}{\partial t} + \tilde{\mathbf{u}}\cdot\tilde{\nabla}\tilde{\mathbf{u}}\right) = -\frac{p_c}{\mu U/L}\tilde{\nabla}\tilde{p} + \tilde{\nabla}^2\tilde{\mathbf{u}} \tag{4}$$
unables number $P_c = \frac{\rho UL}{\rho UL} = \frac{inertia}{\rho UL} = \frac{t_v}{v}$

Reynolds number
$$Re = \frac{\rho UL}{\mu} = \frac{inertia}{viscosity} = \frac{t_v}{L/U}$$

 $t_v = \frac{L^2}{\nu}$ is the viscous (momentum diffusion) time scale ($\nu = \mu/\rho$ is the kinematic viscosity) L/U is the inertia (flow) time scale

Strouhal number $St = \frac{t_c}{L/U}$ for example $t_d = \omega^{-1}$ (period of oscillations in oscillatory shear)

limits:

balance viscous forces and pressure:

$$Re \ll 1$$
 and $Re/St \ll 1$ Stokes flow $p_c = \mu U/L \rightarrow$ Stokes equation

however

 $Re \ll 1$ but $Re/St \sim 1$ unsteady viscous flow $p_c = \mu U/L \rightarrow$ unsteady Stokes equation

balance inertia and pressure:

if $Re \gg 1$ and steady flow $\partial/\partial t = 0 \rightarrow$ inviscid flow $p_c = \rho U^2 \rightarrow$ Bernouli equation

other important dimensionless parameter is the Peclet number

$$Pe = \frac{UL}{D_p} = \frac{L^2/D_p}{L/U} = \frac{\text{particle diffusion time scale}}{\text{flow(convection) time scale}}$$

Complex fluids are made of small, colloidal particles. Choosing the characteristic length scale L to be the particle size (e.g. for a bacterium $L = 1\mu m$) shows that the flow as "seen" by the particle is dominated by viscosity (for water $\rho = 1000 kg/m^3$, $\mu = 10^{-3} Pa.s$) if $U \ll 1m/s$. If U is the bacterium swimming speed $U \sim 1\mu m/s$ then $Re \sim 10^{-6} \ll 1$. Thus we can immediately estimate the order of magnitude of the drag force on a colloidal particle -it is the magnitude of the viscous stresses p_c multiplied by the particle area L^2 , $F_D \sim p_c L^2$. $F_d \sim \mu UL$. The exact solution for the viscous flow past a sphere with radius L gives us the numerical pre factor $F_D = 6\pi\mu UL$

Peclet number measures the importance of Brownian motion relative to particle advection by the flow. For sheared suspensions (see movie from lecture 1), $L/U = 1/shear rate = \dot{\gamma}^{-1}$. If $Pe \leq 1$ then Brownian motion is important (the particle diffuses faster than the fluid moves, and as a result the particle will not follow the flow streamlines!!!!)

[SHOW MOVIES: illustrating regimes of low/high Re, low/high Pe]

Lecture 3. Stokes flow and solutions; Boundary integral formulation, multipole explansion References:

C. Pozrikidis "Boundary integral and singularity methods for linearized viscous flow", 1992 Kim and Karrila "Microhydrodynamics"

4 Stokes Equations: properties, Fundamental solutions

Linearity and reversibility. examples: cross-stream migration

Stokeslet: flow due to a point force with strength \mathbf{F} (\mathbf{F} is force ON the fluid; it is minus the force exerted by the fluid on the body)

$$\nabla \cdot \mathbf{T} = \mu \nabla^2 \mathbf{u} - \nabla p = -\mathbf{F} \delta(\mathbf{x}) \tag{5}$$

i.e., for $\mathbf{x} \neq 0$, $\nabla \cdot \mathbf{T} = 0$ and for any volume V that encloses the point $\mathbf{x} = 0 \int \nabla \cdot \mathbf{T} dV = -\mathbf{F}$. Solution:

$$u_i = \frac{1}{8\pi\mu} G_{ij} F_j, \quad p = \frac{1}{8\pi} P_i F_i$$
 (6a)

$$G_{ij}(\mathbf{x}) = \frac{\delta_{ij}}{r} + \frac{x_i x_j}{r^3} \quad P_i(\mathbf{x}) = 2\frac{x_i}{r^3} \tag{6b}$$

exercise: Substitute Eq. (6) into Eq. (5) to show that Eq. (6) is a solution. Show that the Green's dyadic G_{ij} also satisfies the continuity equation, $\nabla \cdot \mathbf{u} = 0$.

The stress field is

$$T_{ik} = \frac{1}{8\pi} \Sigma_{ijk} F_j \quad \text{where} \quad \Sigma_{ijk} = -P_j \delta_{ik} + \frac{\partial G_{ij}}{\partial x_k} + \frac{\partial G_{kj}}{\partial x_i} = -6 \frac{x_i x_j x_k}{r^5} \tag{7}$$

(Verify that $\int \nabla \cdot \mathbf{T} dV = -\mathbf{F}$.)

Boundary Integral Equation:

Let (\mathbf{u}, \mathbf{T}) is a solution (velocity, stress tensor) of the Stokes equations and $(\mathbf{u}_s, \mathbf{T}_s)$ is the Stokeslet solution, for a point force, $\nabla_{\boldsymbol{\xi}} \cdot \mathbf{T}_s = -\mathbf{g}\delta(\boldsymbol{\xi} - \mathbf{x})$ (\mathbf{g} is a constant vector). \mathbf{u} decays at infinity, so if there is a flow applied at infinity \mathbf{u} stands for the disturbance velocity field, $\mathbf{u} - \mathbf{u}^{\infty}$. Start with the Lorentz identity (reciprocal theorem)

$$\int_{S} \left(-\mathbf{u} \cdot \mathbf{T}_{s} + \mathbf{u}_{s} \cdot \mathbf{T} \right) \cdot \mathbf{n} dS = \int_{V} \left(-\mathbf{u} \cdot \nabla \cdot \mathbf{T}_{s} + \mathbf{u}_{s} \cdot \nabla \cdot \mathbf{T} \right) dV$$
(8)

Steps:

$$\int_{V} \left(-\mathbf{u} \cdot \nabla \cdot \mathbf{T}_{s} \right) dV = \mathbf{u}(\mathbf{x}) \cdot \mathbf{g}$$

$$\nabla \cdot \mathbf{T} = 0$$

• for a solid particle the fluid velocity at the surface is zero (no slip)

$$\int_{S} \left(-\mathbf{u} \cdot \mathbf{T}_{s} \right) \cdot \mathbf{n} dS = 0$$

• since $\mathbf{T} \cdot \mathbf{n} = \mathbf{f}, \ \mathbf{u}_s = c\mathbf{G} \cdot \mathbf{g} \ (c = 1/8\pi\mu),$

$$\int_{S} \left(\mathbf{u}_{s} \cdot \mathbf{T} \right) \cdot \mathbf{n} dS = \int_{S} \left(\mathbf{G} \cdot \mathbf{g} \right) \cdot \mathbf{f} dS$$

• so we get

$$\mathbf{u}(\mathbf{x}) \cdot \mathbf{g} = c \int_{S} \left(\mathbf{G} \cdot \mathbf{g} \right) \cdot \mathbf{f} dS$$

• since \mathbf{g} is arbitrary constant vector it cancels on both sides and we get

$$\mathbf{u}(\mathbf{x}) = c \int_{S} \left(\mathbf{G} \right) \cdot \mathbf{f} dS$$

In general, (when $\mathbf{u} \neq 0$ on the particle surface) (note the normal \mathbf{n} points out of the particle, into the fluid region)

$$\mathbf{u}(\mathbf{x}) - \mathbf{u}^{\infty} = -\frac{1}{8\pi\mu} \int_{S} \mathbf{G}(\mathbf{x} - \boldsymbol{\xi}) \cdot \mathbf{f}(\boldsymbol{\xi}) dS(\boldsymbol{\xi}) - \frac{1}{8\pi} \int_{S} \mathbf{u}(\boldsymbol{\xi}) \cdot \boldsymbol{\Sigma}(\mathbf{x} - \boldsymbol{\xi}) \cdot \mathbf{n} dS(\boldsymbol{\xi})$$
(9)

first term on the RHS is the single-layer potential, and the second - the double-layer potential. Note $G_{ij}(\mathbf{x} - \boldsymbol{\xi}) = G_{ij}(\boldsymbol{\xi} - \mathbf{x})$ but $\Sigma_{ijk}(\mathbf{x} - \boldsymbol{\xi}) = -\Sigma_{ijk}(\boldsymbol{\xi} - \mathbf{x})$. $\mathbf{f} = \mathbf{T} \cdot \mathbf{n}$. and for a solid particle

$$\mathbf{u}(\mathbf{x}) - \mathbf{u}^{\infty} = -\frac{1}{8\pi\mu} \int_{S} \mathbf{G}(\mathbf{x} - \boldsymbol{\xi}) \cdot \mathbf{f}(\boldsymbol{\xi}) dS(\boldsymbol{\xi})$$
(10)

The multipole expansion:

Far away from the particle $|\mathbf{x}| \gg |\boldsymbol{\xi}|$, take Taylor series in $\boldsymbol{\xi}$ about $\boldsymbol{\xi} = 0$

$$G_{ij}(\mathbf{x} - \boldsymbol{\xi}) = G_{ij}(\mathbf{x}) - \boldsymbol{\xi} \cdot \nabla_{\boldsymbol{\xi}} G_{ij}(\mathbf{x} - \boldsymbol{\xi})|_{\boldsymbol{\xi}=0} + \dots$$
(11)

then

$$u_i(\mathbf{x}) - u_i^{\infty} = -\frac{F_j}{8\pi\mu} G_{ij}(\mathbf{x}) + \frac{D_{jk}}{8\pi\mu} \frac{\partial G_{ij}}{\partial x_k} + \dots$$
(12)

The antisymmetric part of D_{jk} can be identified with the hydrodynamic torque on the particle, $\mathbf{L} = \int \mathbf{x} \times \mathbf{f} dS$

$$D_{jk}^{as} = \frac{1}{2} \int \left[f_j \xi_k - f_k \xi_j \right] dS = -\frac{1}{2} \varepsilon_{jkn} L_n \quad \text{or} \quad L_n = -\varepsilon_{njk} D_{jk}^{as} \tag{13}$$

The symmetric part is the stresslet - point force dipole.

exercise: Show that

٠

$$\frac{\partial G_{ij}}{\partial x_k} = \frac{1}{r^3} \left(-\delta_{ij} x_k + \delta_{jk} x_i + \delta_{ik} x_j \right) - \frac{3}{r^5} x_i x_j x_k$$

• the symmetric part is (stresslet flow)

$$\frac{\delta_{jk}x_i}{r^3} - \frac{3}{r^5}x_ix_jx_k$$

• the antisymmetric part is (rotlet flow)

$$\frac{1}{r^3} \left(-\delta_{ij} x_k + \delta_{ik} x_j \right)$$

• See that the rotlet flow is

$$D_{jk}^{as} \frac{1}{r^3} \left(-\delta_{ij} x_k + \delta_{ik} x_j \right) = L_j \left(-\varepsilon_{ijk} \frac{x_k}{r^3} \right)$$

Physical relevance:

1) flow due to a sedimenting sphere \sim Stokeslet

2) micro swimmers (bacterial, algae) - force-free and torque-free. Flow field is approximated by stresslet .

For an experiment visualizing the flow around swimming microorganism see http://arxiv.org/pdf/1008.2681.pdf for further reading - see recent review by Eric Lauga "Bacterial Hydrodynamics" Annu. Rev. Fluid Mech. 2016. 48:10530

Lecture 4. part 1: Complex fluids -rheology

source of complex rheology: particle interactions, deformation

Effective stress

Normal stresses

If fluid motion is in the "1" direct and velocity gradient is in the "2" direction, then

$$N_1 = T_{11} - T_{22}, \quad N_2 = T_{22} - T_{33} = -\frac{1}{2}N_1 + \frac{1}{2}(T_{11} + T_{22} - 2T_{33})$$

we used $T_{11} + T_{22} + T_{33} = 0$ (the stress tensor is traceless) to get the relation between N_1 and N_2 In shear flow $u_1 = \dot{\gamma} x_2$, $E_{ij} = \delta_{i1} \delta_{j2}$

$$T_{ij} = -p\delta_{ij} + 2\mu^{eff}\dot{\gamma} \left(\begin{array}{ccc} 0 & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & 0\\ 0 & 0 & 0 \end{array}\right) + N_1 \left(\begin{array}{ccc} \frac{1}{2} & 0 & 0\\ 0 & -\frac{1}{2} & 0\\ 0 & 0 & 0 \end{array}\right) - \frac{2}{3}\left(N_2 + \frac{1}{2}N_1\right) \left(\begin{array}{ccc} -\frac{1}{2} & 0 & 0\\ 0 & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{array}\right)$$

(so the shear stress $T_{12} = \mu^{eff} \dot{\gamma}$). For a Newtonian fluid in shear (Couette) flow $N_1 = 0$ and $N_2 = 0$

Rheology of a dilute suspension: [see e.g., Leal "Advanced Transport Phenomena" p.473 and Kim and Karrila "Microhydrodynamics", Example 2.1] The effective stress is the ensemble average of the stress distribution in all realizations of the suspension. For a homogeneous suspension, this ensemble average is equivalent to a volume average over a volume that is large enough to contain statistically significant number of particles

$$T_{ij}^{eff} = \frac{1}{V} \int T_{ij} dV = -\langle p \rangle \delta_{ij} + \frac{1}{V} \int_{V} (2\mu E_{ij}) dV + \frac{1}{V} \int_{V} (\tau_{ij} - 2\mu E_{ij}) dV$$
(14)

where $E_{ij} = 1/2 (\partial u_i / \partial x_j + \partial u_j / \partial x_i)$. The last integral is identically zero for the fluid and reduces to an integral over the particles.

$$\int_{V_p} \tau_{ij} dV = \int_{S_p} f_i x_j dS \quad \text{where} \quad f_i = \tau_{ik} n_k \tag{15}$$

The integral over the fluid region

$$\int_{V-\sum V_p} (2E_{ij})dV = \int_V (2E_{ij})dV - \sum_n \int_{V_p} (2E_{ij})dV$$
(16)

$$\int_{V_p} (2E_{ij})dV = \int_{S_p} (u_i n_j + u_j n_i)dS$$
(17)

Hence

$$\int_{V-\sum V_p} (2E_{ij})dV = 2\langle E_{ij}\rangle - \frac{1}{V}\sum_n \int_{S_p} (u_i n_j + u_j n_i)dS$$
(18)

We assume that particles contributions are additive - i.e., we neglect the hydrodynamic interactions (dilute suspension).

Putting it all together

$$T_{ij}^{eff} = -p^{eff}\delta_{ij} + 2\mu \langle E_{ij} \rangle + T_{ij}^p$$
⁽¹⁹⁾

where $\langle E_{ij}\rangle = E_{ij}^\infty$ (applied flow) and the particle stress is

$$T_{ij}^{p} = \frac{1}{V} \sum_{n} \int_{S_{p}} \left[f_{i} x_{j} - (u_{i} n_{j} + u_{j} n_{i}) \right] dS$$
(20)

decomposing into a symmetric traceless and an antisymmetric component:

$$T_{ij}^{p} = \frac{1}{V} \sum_{n} \left(S_{ij} + \frac{1}{2} \epsilon_{ijm} L_{m} \right)$$
(21)

 \mathcal{S} is the stresslet and L is the torque on the particle.

For a sphere in a shear flow the velocity field is (Leal Eq. 8-44)

$$\mathbf{u} = \mathbf{u}^{\infty} - \mathbf{E} \cdot \mathbf{x} \frac{a^5}{r^5} - \frac{1}{2} \boldsymbol{\omega} \times \mathbf{x} \frac{a^3}{r^3} - \frac{5}{2} \mathbf{x} \left(\mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x} \right) \left(\frac{a^3}{r^5} - \frac{a^5}{r^7} \right)$$
(22)

where $\mathbf{u}^{\infty} = \mathbf{\Gamma} \cdot \mathbf{x}$, $\Gamma_{ij} = \dot{\gamma} \delta_{i1} \delta_{j2} = E_{ij} + \epsilon_{ijk} \omega_k$ The stresslet coefficient is $S_{ij} = 8\pi \mu a^3 \left(\frac{5}{6} E_{ij}\right)$. Thus the effective stress of a dilute suspension becomes

$$T_{ij} = -p^{eff}\delta_{ij} + 2\mu E_{ij} + \frac{N}{V}S_{ij} = -p^{eff}\delta_{ij} + 2\mu E_{ij}\left(1 + \frac{5}{2}\phi\right) \quad \phi = \frac{4\pi a^3 N}{V}$$
(23)

so the effective viscosity is $\mu^{eff} = \mu \left(1 + \frac{5}{2}\phi\right)$ part2: examples - powerpoint

