Introduction to pattern formation

Robert D. Deegan University of Michigan Physics, Complex Systems, & Math

Driven systems

Convection

© 2007 Thomson Higher Education

cold hot CONDUCTION
CONVECTION

Control parameter $\varepsilon = (\Delta T - \Delta T_c) / \Delta T_c$

Universality: hexagons

Faraday waves

Vibrated sand

RBC

Universality: stripes

from Swinney & Rericha, 2004

Taylor-Couette

 Ω

Van Dyke 1982

Van Dyke 1982

Van Dyke 1982

Common features

- External boundary conditions fixed in non-equilibrium configurations.
- Boundary conditions act as control parameter
- Past parameter threshold → spontaneous broken symmetry to "structured" state
- Structured states exhibit structure with specific length scale
- Secondary transitions to other states
- Universality

Pattern formation questions

Fundamental question: Where do patterns come from?

- 1. What is the origin of the instability?
- 2. What sets the wavelength?
- 3. What causes the instability to saturate?
- 4. How is the pattern selected?
- 5. What are the transitions?

Pattern formation

• Structure in non-equilibrium systems with fixed external condition

• No "free energy"

• Structure emerges from dynamics, nonlinear PDEs.

Pattern formation in excitable media

Pattern formation in excitable media

Goering & Morris, PNAS 2009

Hallet, Phil. Trans. R. Soc. 2013

Goering & Morris, PNAS 2009

Stolum, Science 1996

The Chemical Basis of Morphogenesis

A. M. Turing

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 237, No. 641. (Aug. 14, 1952), pp. 37-72.

Rushikesh Sheth et al. Science 2012

Kondo & Asai, Nature 1995

Meron et al, Chaos, Solitons, and Fractals 2004.

Zelnik et al, PNAS 2015

Pattern formation at fronts: fracture

Pattern formation at fronts: fractals

Linear stability is not so useful. Doesn't saturate.

Pattern formation at fronts: capillary

Localized states in pattern formation

Localized states in pattern formation

Oscillons

Holes Surface perturbed with jet of air f=120 Hz a=15 g

My background

- Experimentalist
- Particle deposits at contact lines
- Instabilities in fracture
- vibrated complex fluids
- BZ reaction
- splashing from drop impact

Outline

"The next great era of awakening of human intellect may well produce a method of understanding the qualitative content of equations...Today we cannot see that the water flow equations contains such things as the barber pole structure of turbulence that one sees between rotating cylinders. Today we cannot see whether Schrodinger's equation contains frogs, musical composers, or morality--or whether it does not."

- R.P. Feynman in The Feynman Lectures on Physics (1964)

- 1. Qualitative theory of ODEs
- 2. Linear stability analysis
- 3. Weakly nonlinear analysis
- 4. Excitable systems
- 5. Parametrically driven systems

References

- Nonlinear dynamics
 - Strogatz, Nonlinear dynamics & chaos
- Linear stability
 - Drazin & Reed, Hydrodynamics stability
- Weakly nonlinear analysis
 - Bender & Orszag, Advanced mathematical methods for scientists and engineers: Asymptotic methods & perturbation theory
 - Godreche & Manneville, Hydrodynamics and nonlinear instabilities
- Pattern formation
 - Cross & Greenside, Pattern formation and dynamics in nonequilibrium systems
 - Cross & Hohenberg, Pattern formation outside of equilibrium