Mapping the UMass Amherst Campus Using UAS Aerial Imagery 2023

By Ryan Wicks | 25 Jun 2023

Introduction

If you’ve visited the UMass Amherst campus occasionally in the last 10 years you may have noticed dozens of new construction projects of various sorts popping up all over the campus; new academic buildings, solar panel parking canopies (https://www.umass.edu/sustainability/climate-change-energy/solar-energy/2017-solar-projects), and geothermal well drilling, just to name a few. To coordinate these efforts effectively, up-to-date information – specifically GIS data – is quite helpful. Not only does the UMass Amherst Physical Plant leverage drones and Trimble R10 RTK to regularly survey progress on construction projects, but they also host a campus-wide GIS working group whose focus is to promote and leverage the power of GIS data, tools, and ancillary equipment to provide highly detailed, highly accurate, current information to any departments and decision makers in the UMass network.

Continue reading “Mapping the UMass Amherst Campus Using UAS Aerial Imagery 2023”

Validating Water Surface Elevation for a Citizen Science Project in New Hampshire

By Merritt E. Harlan

How and why lake volumes change over time remains a largely unknown question globally. Factors such as precipitation, water table height, evaporation, and human impacts such as lake level drawdown can impact lake volumes over time, potentially resulting in changes in water supply and lentic ecosystems. To learn more about changes in lake volumes at a global scale, the project “Lake Observations by Citizen Scientists and Satellites” (LOCSS) pairs satellite imagery, which can detect lake area over time, with simple lake gauges that everyday citizens can read and collect data from. With the changes in height read from the lake gauge paired with the changes in lake surface area, we can better assess changes in lake volume over time. Continue reading “Validating Water Surface Elevation for a Citizen Science Project in New Hampshire”

Students Help Set Up Event Layout for 2019 UMass Amherst’s Commencement with the Trimble R10

by Alex Okscin

Undergraduate students in BCT and other programs in collaboration with the UMass Amherst Physical Plant assisted the commencement planning team with layout for the main graduation event. Commencement planning for thousands of students takes a village or at least the Physical Plant at UMass Amherst. One of the people responsible for coordinating the layout for events is Surveyor and GIS Administrator Carl Larson. Carl has been in charge of staking out commencement planning for a number of years, but this year Carl has a little more help. With the help of a few students and Trimble GPS equipment, the stadium will be transformed from an athletic field to graduation for thousands of students and their parents. By using the Trimble R10, we have cut the time it takes to layout graduation by almost two-thirds.

Continue reading “Students Help Set Up Event Layout for 2019 UMass Amherst’s Commencement with the Trimble R10”

UMass researchers using radar to detect drones

Drone flights were in support of a project lead by a Collaborative Adaptive Sensing of the Atmosphere (CASA) research team in the UMass Amherst Electrical and Computer Engineering Department (http://www.casa.umass.edu/). The team, led by Krsztof Orzel and Apoorva Bajaj, wanted to test the ability of their weather radar system to track and identify UAS targets. The Trimble ZX5 hexacopter was flown in a variety of patterns and altitudes to test the limits at which the drone could be detected. The drone was also flown simultaneously with the a DJI Spreading Wings 900 (that had been modified with a PixHawk for its flight controller) which was flown by another independent pilot. The simultaneous flights allowed the opportunity to start to get a sense of how easily the weather radar could de-conflict the two signals from each of the drones. By comparing the radar signal log to the flight logs of the multirotor UAVs, the team aims to gain a sense of the accuracy and precision of their radar instrumentation, and in the future they aim to tweak the signal processing algorithms to yield better results. Continue reading “UMass researchers using radar to detect drones”