Infrastructure is best surveyed from the air – and in infrared!

by Ryan Wicks

At the UMass Amherst campus we regularly use UAS to conduct surveys of key infrastructure; whether it be to monitor and document stages of new construction on campus or to survey and inspect existing infrastructure. One of our more recent additions to our array of capabilities is the capacity to develop thermal orthomosaics from long-wave infrared (LWIR) imagery. This can help us map heat sources and thermodynamic processes of buried infrastructure, or look at heat loss in structures.

Fig. 1 – Example LWIR Thermal Image: In this LWIR thermal image temperature is represented in a linear white-hot grayscale; that is to say that black in the image represents the lowest apparent temperature (-12.5 degrees Celsius as indicated in the scale on the right of the image) and white represents the highest apparent temperature (5.5 degrees Celsius as indicated in the scale on the right of the image), and temperatures inside this range are represented with varying shades of gray that are assigned in a linear fashion. The temperatures are only “apparent” because other factors besides temperature can effect the emitted radiation that the camera detects, such as the varying emissivities of materials in the image field of view. This image is tuned to an emissivity of 0.98. The point “Sp1” in this image is shown to have an apparent temperature of -0.8 degrees Celsius. The mostly vertical white streak in this image is actually sewage line buried under the ground, but the heat from it reach the surface and the emitted thermal radiation is visible by a LWIR camera.

Continue reading “Infrastructure is best surveyed from the air – and in infrared!”

Trimble R10 – The Conversation Starter!

by Amanda Davis

When you walk around in public spaces carrying a Trimble R10 RTK over your shoulder, you get asked a lot of questions!

For the past two summers,  myself and a group of researches have used the Trimble R10 to take location and elevation measurements of landscape features in salt marshes throughout Massachusetts. Sometimes we are at Audobon sites sharing space with birders, sometimes we are near roads or in what seems like someone’s backyard, and sometimes we are just off of someone’s favorite walking path. Regardless of who we cross paths with – birder, driver, homeowner, or hiker – we always get asked about the R10 because it looks so sleek yet complex! Sometimes we are asked “What are you doing?” or “What is that?” or our favorite, “Are you making a movie?!”.

Continue reading “Trimble R10 – The Conversation Starter!”

Students Help Set Up Event Layout for 2019 UMass Amherst’s Commencement with the Trimble R10

by Alex Okscin

Undergraduate students in BCT and other programs in collaboration with the UMass Amherst Physical Plant assisted the commencement planning team with layout for the main graduation event. Commencement planning for thousands of students takes a village or at least the Physical Plant at UMass Amherst. One of the people responsible for coordinating the layout for events is Surveyor and GIS Administrator Carl Larson. Carl has been in charge of staking out commencement planning for a number of years, but this year Carl has a little more help. With the help of a few students and Trimble GPS equipment, the stadium will be transformed from an athletic field to graduation for thousands of students and their parents. By using the Trimble R10, we have cut the time it takes to layout graduation by almost two-thirds.

Continue reading “Students Help Set Up Event Layout for 2019 UMass Amherst’s Commencement with the Trimble R10”

Using the Trimble R10 with Drones to Develop City Models for Professional Planners

by Ryan Wicks

City and regional planners have the daunting task of developing a vision for the future of both the physical, aesthetic and cultural feel of an area. This often involves engaging multiple parties that have a stake in that future, identifying convergent or divergent needs or desires of those stakeholders, identifying themes within those needs or desires, and developing not just one potential plan, but a multitude of plans that can be considered in comparison. Continue reading “Using the Trimble R10 with Drones to Develop City Models for Professional Planners”

Measuring Ground-Control Points for Salt Marsh Studies

The Wetland Assessment Program (WAP) at UMass Amherst is an ongoing research program, the main goal of which is to study wetland ecosystems and to develop better tools for monitoring and conservation of these areas. (http://www.umasscaps.org/applications/wetlands-assessment.html) Headed by Dr. Scott Jackson and Dr. Kevin McGarigal for the past decade, WAP is part of the larger Conservation Assessment and Prioritization System (CAPS). The main strategy of the program is to find and measure relationships between Landsat data – which includes land use data, elevation, slope, etc. – and both Indices of Biological Integrity (IBIs) and Indices of Ecological Integrity (IEI’s). The specific sampling and observation methods vary depending on the type of wetland system under consideration. The program has had significant success in finding meaningful and useful patterns for most wetland systems, however success with salt marsh studies has been elusive. Continue reading “Measuring Ground-Control Points for Salt Marsh Studies”