
Peierls Instability

Problem. Consider an ideal one-dimensional electronic system. A weak
periodic potential in the form

V (x) = V0 cos(2kFx) (1)

is added to the Hamiltonian (kF is the Fermi momentum; h̄ = 1). Calculate
the dispersion law for the lowest energy band in the two-band approxima-
tion, and evaluate the total ground-state energy of the gas, expressing the
result as a difference between the energy of the perturbed and non-perturbed
systems.

Solution

We start with a general analysis. Our potential is periodic with the period

a = π/kF . (2)

In 1D, the relation between the number density, n (of a spin-1/2 system),
and the Fermi-momentum is

n = 2kF /π . (3)

Hence,
na = 2 , (4)

meaning that we have two particles per unit cell, so that the ground state
is the band insulator (completely filled lowest band).

Now we find the spectrum of the lowest band in the two-band approxi-
mation. The exact system of equations reads[

q2

2m
− E

]
Cq +

∑
G

UGCq+G = 0 . (5)

In 1D, and within the two-band approximation, we are left with (UG =
V0/2 ≡ ∆)[

q2

2m
− E

]
Cq + ∆Cq+G = 0 , G = ±2π/a . (6)
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Moreover, in the weak-interaction limit we are interested only in the close
vicinities of the resonant points q0 = ±π/a, where the hybridization effects
are strong enough. Away from these points, for the lowest band we simply
have Cq ≈ 1, E ≈ q2/2m. By periodicity, it is sufficient to consider the point
q0 = −π/a (for which the resonating G is 2π/a). Introducing a convenient
variable

k = q − q0 (7)

and expressing the non-perturbed energies in terms of it,

q2 = (k + q0)
2 = k2 + q20 + 2kq0 , (8)

(q +G)2 = (k − q0)2 = k2 + q20 − 2kq0 , (9)

we get the system of equations[
(k2 + q20 + 2kq0)/2m− E ∆

∆ (k2 + q20 − 2kq0)/2m− E

] [
Cq

Cq+G

]
= 0 .

(10)
The spectrum is found from the requirement that the determinant be zero.
We get two solutions:

E =
k2 + q20

2m
±

√(
kq0
m

)2

+ ∆2 , (11)

of which we are interested only in the lowest one:

E =
k2 + q20

2m
−

√(
kq0
m

)2

+ ∆2 (lowest band) . (12)

Within the same parameterization, the spectrum of the non-perturbed sys-
tem is obtained by simply setting ∆ = 0:

E(0) =
k2 + q20

2m
−
∣∣∣∣kq0m

∣∣∣∣ , (13)

leading to the following expression for the energy difference

E(k)− E(0)(k) = |v0k| −
√

(v0k)2 + ∆2 (|k| � |q0|), (14)

where

v0 =
dE(0)(k)

dk

∣∣∣∣∣
k=−0

. (15)
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Note that replacing q0/m with v0 defined by Eq. (15) renders Eq. (14) more
general: now it applies to the case of arbitrary dispersion of the electrons.
In particular, Eq. (14) works for the case of any periodic external potential,
on top of which the weak potential (1) is imposed.

The system energy (expressed as the energy difference between the en-
ergy of the system with and without weak potential per unit length) is:

δEel = 2

∫ [
E(k)− E(0)(k)

] dk
2π

= 2

∫ [
|vFk| −

√
(vFk)2 + ∆2

]
dk

2π
.

(16)
(At this point we recall that q0 = kF , meaning that v0 is the Fermi velocity,
vF .) Introducing the dimensionless variable

x =
kvF
∆

(17)

and taking into account the x→ −x symmetry, we get

δEel =
2∆2

πvF

∫ x∗

0

(
x−

√
1 + x2

)
dx , x∗ =

vFkF
∆

� 1 . (18)

The main contribution to the integral comes from x� 1, where√
1 + x2 ≈ x+

1

2x
(19)

so that with the logarithmic accuracy∫ x∗

0

(
x−

√
1 + x2

)
dx ≈ − lnx∗

2
, (20)

and the final result is

δEel = − ∆2

πvF
ln
vFkF

∆
,

vFkF
∆

� 1 . (21)

Peierls instability. The result we obtained is central for the effect known
as Peierls instability. The energy gain from a weak potential (1) scales as V 2

0

times the (arbitrarily) large logarithm. This is to be contrasted to the en-
ergy cost for creating an the potential (1) by slightly changing the distances
between ions. This energy cost scales only as V 2

0 . Hence, a sufficiently weak
distortion of the ionic lattice is always favorable in the otherwise metal-
lic phase. A very common pattern of such distortion is dimerization. It
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takes place when there is a chain of identical atoms with an odd number
of electrons per atom. Here the distances between adjacent ions alternate
(shorter–longer), leading to doubling the lattice period, and, correspond-
ingly, opening the insulating gap. Such a state is called Peierls insulator.

Peierls transition. As an instructive example, consider a 1D chain of hy-
drogen atoms. At zero pressure, the chain is a molecular insulator. While
it is legitimate to call this state Peierls insulator, here we should keep in
mind that the dimerization effect is so strong that it makes little sense to
talk of Peierls instability. The situation changes, however, at high pressure.
Here the Coulomb interaction between the electrons and ions (and between
electrons themselves) becomes perturbative, the Peierls dimerization gets
weaker to the degree that it can easily be suppressed by a moderate tem-
perature. This phenomenon is called Peierls transition. Strictly speaking,
there are no finite-temperature phase transitions in 1D systems with short-
range interactions. We are thus talking of a sharp crossover at a certain
temperature Tc ∼ ∆0, where ∆0 is the optimal value of the parameter ∆
obtained by minimizing the total energy difference

δEtot = δEel + δElatt, (22)

where δElatt is the energy cost of lattice distortion. In accordance with our
discussion, we have

δEtot ∝ −∆2
[
ln
vFkF

∆
−B

]
, (23)

where B � 1 is a certain dimensionless constant controlling the weakness
of the Peierls effect.1 Minimizing δEtot with respect to δ, we find

∆0 = cεF e
−B, (24)

where εF ∼ vFkF is the Fermi energy and c is the dimensionless constant
of order unity. The precise value of this constant is system dependent, since
it requires to go beyond the logarithmic accuracy in calculating the integral
(20), which in its turn requires the precise form for E(k)−E(0)(k) at k ∼ kF .

1In the model where the lattice is replaced with an elastic medium coupled to the gas
of ideal electrons, we have B = πvF /g

2, with g the coupling constant.
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