NMR New User Workshop

Second session

Rui Huang

Notes reproduced from Dr. Weiguo Hu

Link:

ruihuang@umass.edu

weiguoh@polysci.umass .edu

Booklet:

https://udrive.oit.umass.edu/wei guoh/nmrhandouts/Introduction-<u>NMR.pdf</u>

Questions and Hands-On Practices

- What are some safety concerns in the NMR lab?
- What are some best practices when preparing NMR tubes for experiments?
- What are the purposes of atma, lock, shim, and rga?
- What are some necessary spectral processing steps to take before integrating the peaks?

¹³C NMR

renare for a new eve	ariment by creating	a new data set and
nit alizing its NMR pa or mult-receiver ex lease define the num	rameters according to periments several dat neer of receivers in th	e the selected experiment type, casets are created. le Options,
NAME	Test	
EXPNO	1	
PROCNO	1	
Use current param	eters	
Experiment PROTO	DN1	Select
Options		
Set solvent:		CDCI3
🖲 Execute "getp	rosol	
© Keep paramet	ters:	P 1, 01, PLW1 * Change
DIR		/opt/topspin3.2/data/X00//nmr
Show new dat	teset in new window	
Receivers (1,2,	16)	1
Receivers (1,2,	16)	1

edc and select CARBON1 in experiment (attach the screenshot)
 atma

Sensitivity of ¹³C: ¹H

- The more sample amount, the better the s/n will be
- Using line broadening (lb) to enhance s/n
- Every carbon has one single peak
- Because a "decoupling" technique is used to remove influence from 1H
- Integration is less reliable than 1H

¹³C integration can be very useful if used wisely https://blogs.umass.edu/weiguoh/

Decoupling

In ¹³ C experiment, ¹³ C-¹ H J-coupling is usually removed by a "decoupling" pulse sequence

- Pulsing at ¹ H during detection of ¹³ C signal
 - i.e. Set pulsing frequency to ¹ H and detector frequency to ¹³ C
- Decoupling resolves overcrowding due to large
 ¹J splitting
 - The large ¹ J couplings usually don't provide useful information
- Decoupling reduces ¹³ C multiplets to singlets, which improves S/N

DEPT (Distortionless Enhancement by Polarization Transfer)

Discern methyl, methylene, methine, and quaternary carbons

- A ¹D technique, with several variations. Most popular is DEPT-135
- CH and CH3 peaks are positive; CH2 peaks are negative
- Carbons with no directly bonded protons do not have signals
- Why do solvent peaks vanish in DEPT?

2D NMR : implementation

•Conventional NMR spectra (one-dimensional spectra) are plots of intensity vs. frequency

 In two-dimensional spectroscopy intensity is plotted as a function of two frequencies.

COSY : ¹ H and ¹ H correlation : *Connectivity of protons* HMQC: ¹ H and ¹³ C correlation : *Direct C – H Connectivity*edc to create the directory
Running a 2D experiment is almost as easy as running a 1D

- All the pulse sequence parameters have been "packaged" for you

COSY(Correlation Spectroscopy)

Detects connectivity between protons that have J coupling

- • Both dimensions are ¹ H
- • Vertical is always 1st dim.
- • 3 diagonal peaks
 - provide no new information
- Cross peaks at (1.2ppm, 2.6ppm) and (2.6ppm, 1.2ppm) indicate strong Jcoupling
 - Usually only 2 J and 3 J are strong enough to give cross peaks
- You can optionally plot 1D spectrum on the side to compare with the 2D spectrum. 1D spectrum usually has higher resolution and less artifacts.
- • Fourier transform command: xfb instead of efp
- $\cdot xfb$ be can done at any point during the analysis
- when good resolution is achieved the experiment can be stopped
- using halt command

HMQC (Heteronuclear Multi-Quantum Correlation)

- A ¹³C-¹H 2D spectrum
- No diagonal peaks
- -Diagonal peaks could only exist when both dimensions are the same type of nuclei
- Shows direct C-H connectivity
- Non-protonated carbons don't have a peak on the spectrum
- Beware of artifacts
 - -Along the "ridges" of big peaks
 - -In the middle lines of spectrum window
- Must do atma

NMR Facility Policies

1.Reservation

-please follow the reservation rules on top of the Calcium calendars.
-3 violations will face suspension of their accounts for 3 weeks.
2.Internet access is limited to umass domain

3.Data storage: The NMR computer gets full quickly. You need to transfer out data and delete them from the NMR computer asap.

- -pse server automatically deletes data that are > 7 days old
- -Don't use flash drive; it could contaminate
- -If you have too many data files, Tospin will load very slowly

-You have two folders to store your data:

/home/[username]. This includes your desktop. Intended for temporary storage only.
/opt/topspin3.2/data/[username]/nmr. You can keep stuff here for slightly longer.

NMR Facility Policies

5.Reporting of problems and incidents

Report instrument problems to Czar if your group has one, otherwise report to me.
Never attempt to fix problem or reboot computer
Report incident caused by you (standard sample breakage etc.) to Dr.Hu

6.You are responsible for the act of anybody using your account (junior grad students, summer students et al)

–When you feel your trainees can comfortably run simple NMR experiments themselves, ask them to contact me to obtain their own accounts

7.Please keep the workplace clean