Introduction to 1D and 2D NMR Spectroscopy

(1) Basics

Lecturer: Weiguo Hu A328 Conte Email/Google Chat: <u>weiguoh@umass.edu</u> February 2023

1

What you will learn from this course

 Judge if the results from your routine NMR spectra are sound

 Challenges that modern chemists face: molecules with complex structures: block copolymers; dendrimers; amphiphilic molecules; nanogels; bottlebrush polymers;

- Understand several essential NMR concepts
 - Working principles of NMR experiments
 - T1 and T2 relaxations
 - Molecular dynamics
- Learn a few techniques that probe your molecules' physical behaviors (e.g., how they organize; how they move around)
 - T1/T2 measurement
 - Diffusion

1

Logistics

- 9 10 classes
- Course slides: blogs.umass.edu/weiguoh
- Reading material: "A Brief Introduction to NMR" (also on my blog)
 Sections about solid-state NMR can be ignored
- Homework (40%)
 - Work in a team
 - prepare your own sample, run experiments, and write reports
 - Please email your answers to me by deadlines
 - You will be given chances for revision if you make major mistakes
- Quizzes (30%): in class; ca. 10 minutes each.
- Q and A sessions: 10-10:30am after each class, or email to make appt
- Exam ½ hour in the last class (30%)

3

3

Concepts To Be Extensively Used In This Course

- Atom structure
 - <u>nuclei are little magnets</u> due to their spin
 - Electrons are even stronger magnets, but they are usually paired (one up and one down), so they can be considered non-magnetic
- Electromagnetic interactions
 - What happens when you put two magnets close to each other?
 - How can you produce a magnetic field without a magnet?
- Fourier transformation
 - A graph showing the frequency components is called a spectrum
 - When you strike middle C (261.6Hz) on piano, how does the spectrum of the music look like? How about a C major chord?
 - <u>Comparing a long-lasting wave with a fast-fading one, how would their spectra look different?</u>

NMR – Nuclear Magnetic Resonance

<u>Piano</u>	<u>NMR</u>
Strings	Nuclei in sample
Tension on strings	Magnetic field
The knock	Pulse(s)
\Rightarrow Music	\Rightarrow Signal F (t)
⅔¥₹∝────────────────────────────────────	$^{1}H \underbrace{\overset{\text{excitation}}{\underset{\text{pulse}}{\text{pulse}}}_{\text{detection}} \int f(\omega)$

History of NMR

Nobel Prizes:

5

- 1952 Physics: Discovery of NMR phenomenon
- 1991 Chemistry: 2D NMR
- -2002 Chemistry: Protein 3D structure
- -2003 Physiology: MRI
 - In the US, ca. 40 million MRI scans per year performed.

Figure 19 2D [¹H,¹H]-NOESY spectrum of the plant pathogenesis-related protein P14A (M \approx 15000). A contour plot of the spectral region [$\omega_1(^1H) = 0.4.3$ ppm, $\omega_2(^1H) = 6.3-9.5$ ppm] is shown (750 MHz, 30°C, H₂O-solution). Wüthrich, *J. Biomol. NMR*, **27**: 13-39, 2003

2FUH

5

Larmor Equation

$\omega = \gamma B$

- ω is signal frequency of the nucleus
- γ (gyromagnetic ratio) is a property of the nucleus
 - All nuclei of the same isotope have the same $\boldsymbol{\gamma},$ regardless of its chemical environment

γ (¹³C) ~ ¼ of γ (¹H)

- On a 400MHz spectrometer, frequency of ¹³C ~ 100 MHz
 - A "600 NMR" means that its ¹H frequency is 600 MHz
 - What is the ¹³C frequency on a 600MHz instrument?
- B is magnetic field strength

An NMR Spectrometer

Magnet

7

- Superconducting coil
- Helium dewar
- Nitrogen dewar
- Console

.

- Pulse generationSignal amplification
- Probe
 - RF coil: irradiate pulses on sample; receives signal

7

Magnets in Your Sample

- From the big environment:
 - the "big magnet" (B₀)
 - sample tube
 - insoluble particles and dirt stains
- From the small environment (molecular level)
 - electrons in the neighborhood "shielding effect"
 This is the physical mechanism of chemical shift
 - neighboring nuclei "J-coupling"

Summary of Important Concepts

- What are some basic components of an NMR experiment?
- What are some basic components of an NMR spectrometer?
- <u>An important equation</u>: $\omega = \gamma B_0$
 - Every peak on a proton spectrum has a different frequency. Which factor in the equation generates such a difference?
 - What kinds of magnets are present in your sample?