### Introduction to 1D and 2D NMR Spectroscopy

(2) Vector Model and Relaxations

Lecturer: Weiguo Hu 7-1428 weiguoh@umass.edu February 2023

### Rules of Electromagnetism (1): Behaviors of the Magnetic Moments

- In the field of gravity, a stationary object would simply fall, while a spinning object (a *moment*) would precess
  - Precession is around the direction of gravity
- 2. Precession of the magnetic moment on the horizontal plane (around the z-axis) emits signal
- Signal intensity ∞ amplitude of horizontal component



1

### Rules of Electromagnetism (2): Resonance

- When the frequency of the pulse satisfies the Larmor Equation ("resonance"), the oscillation of the pulse and the external field B<sub>0</sub> cancels each other, resulting in a static horizontal magnetic field B<sub>1</sub>
  - i.e., during pulsing,  $\mathsf{B}_{0}$  can be considered non-existent, and only  $\mathsf{B}_{1}$  is at play
  - B<sub>0</sub> and B<sub>1</sub> are the magnetic fields, which influence the magnetic moments
  - I is the magnetic moments, i.e., the object to be manipulated by the fields



3

### Vector Model of NMR \*\*



- 1. Magnetic moments are aligned along z direction
- A pulse creates a horizontal magnetic field B<sub>1</sub> along -y direction, which (1) cancels B<sub>0</sub>; (2) causes the magnetic moments to precess around B<sub>1</sub>

The pulse stops when the magnetic moments turns  $90^{\circ}$ , toward x

4. Magnetic moments precess around B<sub>0</sub>, generating signal

- Two precessions:
  - $\begin{array}{ll} & 1. \mbox{ during pulsing, on a vertical circle, around the horizontal field B_1 created by the pulse} \\ & 2. \mbox{ after pulse stops, on a horizontal circle, around the vertical big field B_0} \end{array}$
- Angle turned by the pulse ∞ pulse length
- Signal strength ∞ horizontal component of the magnetic moment

## Signal strength at imcrementing pulse length



- Increment step = 0.4 µs
- First maximum of signal appears at ca. 4.6 μs
- First null point appears at 9.6  $\mu$ s
- 5

### Use These Questions to Familiarize Yourself with Vector Model

- Suppose a pulse of 10 µs turns the vector by 90°, generating a signal with intensity of 1. What would signal intensity be for pulses of
  - 20 μs?
  - 30 μs?
  - 40 μs?
  - 5 μs?
  - 3.33 μs?

6

# $T_1$ and $T_2$ Relaxations



- Relaxation: process from high-energy (excited) state to lowenergy (equilibrium) state
- The higher the energy gain upon relaxation, the easier the relaxation is to occur

7

8

**Relaxations in Vector Model \*\*** 



- $T_1$ : coming back to  $I_z = 1$  (with no concern about  $I_{x,y}$ )
- T<sub>2</sub>: coming back to I<sub>x,y</sub> = 0 (with no concern about I<sub>z</sub>)
- T<sub>1</sub> and T<sub>2</sub> are independent processes
  Vertical and horizontal components recover at different rates
- Don't confuse  $T_1/T_2$  relaxation with molecular relaxation

### T<sub>1</sub> Measurement: Inversion Recovery



- What does the 180° pulse do?
- The 90° pulse: read out the signal



- Why should I care about T<sub>1</sub> and T<sub>2</sub>?
  - Is my spectrum quantitative?
  - Is everything in my sample showing up on the spectrum?
  - What are my molecule's physical behaviors?
- T<sub>1</sub> relaxation time affects signal intensity –Why?
- T<sub>2</sub> relaxation time affects signal width

$$-\Delta \nu = \frac{1}{\pi T_2}$$

| 4 | 4 |
|---|---|
| 1 | 1 |
|   |   |

11

#### **Important Concepts**

- Nuclear magnetic moments follow the rules of classical electromagnetics
  - Magnets will "precess" in an external magnetic field
  - Only horizontal component of magnetic moments gives out signal
- A 90° pulse, a 180° pulse, and what they do
- What are T<sub>1</sub> and T<sub>2</sub> relaxations, and what NMR properties that they affect