PSE797MR Weiguo Hu February 2024

INTRODUCTION TO SOLID STATE NMR (1)

1

WHAT CAN SSNMR DO?

- Many aspects of materials can be probed
 - + Chemical structure
 - + Phase structure of heterogeneous materials and composites
 - × Crystalline/amorphous; rigid/soft; domain structures and sizes
 - + Molecular dynamics
 - × e.g. glassy vs rubbery
 - × Zeolite vs the trapped gas/liquid molecule in the cage
 - + Can be quantitative
- × Challenges
 - + Needs to tailor method according to the problem
 - + Complex theories
- × Objective
 - + Awareness of the potentials of ssNMR
 - + You can properly set up and interpret several essential ssNMR experiments
 - + You can gain some insights into the morphology and dynamics of some classical solid-state materials

2

ORGANIZATION OF THE COURSE

- × Basic Theory
 - + Technical challenges of solid-state NMR
 - + Several most important techniques for overcoming these challenges
- **x** Examples and interpretation
 - + You are welcome to submit your own research samples
- × Very simple math, but a lot of concepts
 - + You will need to not leave them as scattered pieces of brick but connect them into a building (how?)
- × Grades:
 - + Quizzes (50%)
 - + Report: interpret some ssNMR spectra (50%)
- × No final exam
- x References: (1) class slides; (2) the NMR "booklet": "A Brief Introduction to NMR"
 - + https://websites.umass.edu/weiguoh/?p=771

3

3

NMR - NUCLEAR MAGNETIC RESONANCE

<u>Piano</u>	<u>NMR</u>
Strings	Nuclei in sample
Tension on strings	Magnetic field
Strike the key!	Pulse(s)
⇒ Music	⇒ Signal F (t)

4

5

BASIC CONCEPTS OF AN NMR EXPERIMENT

- We are only concerned with the magnetic properties of the nuclei (<u>magnetic moments</u>, or <u>magnetization</u>)
- * At equilibrium, these little magnets are aligned parallel to external magnetic field (z direction)
 - + Just like what your compass will do
 - + They won't give out signal at this state
- A 90° "excitation" pulse rotates the magnets to the horizontal plane so that they give out signal

6

LARMOR EQUATION

$$\omega = \gamma B$$

- × ω is signal frequency of the nucleus
- × γ (gyromagnetic ratio) is a property of the nucleus
 - + All nuclei of the same isotope have the same γ , regardless of its chemical environment
 - $\times \gamma$ (13C) ~ 1/4 of γ (1H)
 - + On a 400MHz spectrometer, frequency of ¹³C ~ 100 MHz
 - × A "600 NMR" means that its ¹H frequency is 600 MHz
 - × What is the ¹³C frequency on a 600MHz instrument?
- × B is magnetic field strength
 - + Contains many terms from all sorts of interactions between magnetic moments

7

AN IMPORTANT RELATIONSHIP IN FOURIER TRANSFORMATION

The "uncertainty principle":

- $\mathbf{x} \ \Delta \nu = \frac{1}{\pi \Delta t}$
- A long-lasting signal (time domain) corresponds to a narrow peak on the spectrum (frequency domain)
- A fast-decaying signal (time domain) corresponds to a broad peak on the spectrum (frequency domain)

THEORETICAL DESCRIPTIONS OF NMR

- × Quantum mechanics
 - + Rigorous
 - + Complex
- Energy level model
 - + approximation
 - + In a magnetic field, nuclei is divided into two populations: up and down
 - + Suitable for understanding relaxation phenomena; unsuitable for describing pulsed NMR experiments
- × Vector model
 - + approximation
 - + The net magnetization moment can be represented by a vector
 - + Motions of moments or vector: precession (the rotation of the moment axis under the influence of an external force field)
 - x Examples of moments: a moving bicycle; a spinning top; the Earth
 - + Suitable for understanding the effect of pulses

9

- What is the difference between a spinning top and a dead one?
- The axis of the precession is along the external force field
- NMR experiments are basically toying with "spinning tops"

VECTOR MODEL OF NMR

- x In the beginning, magnetic moments I is aligned parallel to B₀
 - Distinguish the arrows representing <u>fields</u> and the arrows representing <u>moments</u>
- A RF (radio frequency) pulse cancels the effect of B₀ and generates a horizontal magnetic field B₁, which makes the magnetic moments <u>precess</u> <u>on a vertical plane</u>
 - + The effect of ${\bf B_0}$ is only canceled during pulsing; it's fully present when not pulsing
- \star Flip angle ∞ pulse length (e.g. a 180° pulse is twice as long as a 90° pulse)
- During detection, magnetic moments <u>precess on the horizontal plane</u> and gives out signal

11

11

MAJOR INTERACTIONS IN NMR

- x Interaction between nuclei: dipolar coupling
- Why should we care about interactions?
 - + Each interaction produces a magnetic field, thus a new peak position
 - x If the above interactions did not exist, the NMR spectrum would be a single, extremely sharp peak
 - + A lot of interactions generate a lot of peaks in various positions, resulting in a very broad peak
- We use various types of pulsing techniques to eliminate certain interactions so that we can selectively study the interactions that we are interested

$$\omega = \gamma B$$

12

THE COMPLEX SITUATION OF NMR IN THE SOLID STATE

- Chemical shift value of a nucleus depends on its relative orientation with regard to the magnetic field – "chemical shift anisotropy" (CSA)
 - + Result: each atom gives not a single peak but a "horned" pattern

³¹P spectrum of a liquid crystalline state phospholipid. Such a shape is often called the "powder pattern".

If you dissolve a phospholipid sample in CDCl₃, what would its ³¹P spectrum look like?

13

13

INTERACTION BETWEEN NUCLEI: DIPOLAR COUPLING

- J-coupling in solution NMR: 1-150 Hz
 - + Gives multiplet splittings
 - + Orientation independent
- Dipolar coupling in SSNMR: ca. 50 kHz
 - + Orientation dependent
 - + ¹H-¹H: broadens ¹H spectra
 - + ¹H-¹³C: broadens ¹³C spectra
 - $\ \ + \ \$ Both intra- and intermolecular dipolar coupling are present

Proton NMR spectra of three poly (urethane urea) (PUU) PUU2k elastomer samples. PUU1k PUU650 W. Hu et al., Polymer 2013 40 -20 –40 kHz A typical solution proton NMR spectrum 14

MOTIONS OF MOLECULES

- Molecules tumble fast in liquid
 - + Rate (Ω): >10¹² s⁻¹ for small molecules
 - \mathbf{x} Motion is in random direction and random speed. Ω is an "average"
 - + Correlation time (τ_c): inverse of Ω
 - + Motion is faster at higher temperature
- **x** Effect of molecular motion to spectra: significant when $\Omega >= \Delta \delta$ (peak width; ~ strength of magnetic interactions)
 - + "frequency fight"
 - + ¹H NMR peak width of a rigid organic material ~ 50 70 kHz (> 100 ppm)
 - + ¹H NMR peak width of a rubbery polymer ~ 1 kHz
 - + ¹H NMR peak widths of solution-state spectra usually < 1 Hz
- * A broad range of motional states in the solid state: crystalline; glassy; rubbery; liquid crystalline; crosslinked; etc.

15

15

T₁ AND T₂ RELAXATIONS

Equilibrium

Non-Equilibrium

Equilibrium

- Magnetic moments are in the excited state when pulsed + And they need to come back to the resting place
- Relaxation: process from high-energy (excited) state to low-energy (equilibrium) state
- Understanding of relaxation is critical for SSNMR
- T₁ and T₂ relaxations are not molecular relaxations + However, these relaxations are driven by molecular relaxations

16

- ★ T₁: I_z coming back from 0 to 1

- T_2 : I_{xy} coming back from 1 to 0 T_1 and T_2 are independent processes Rotation of magnetic moment by pulsing is fast and coherent; rotation of magnetic moment by relaxations is slow and incoherent

17

17

- Pulse sequence
- T_1 is the time to recover to equilibrium after each pulsing
 - Getting the "pool" ready for the next scan
- maximum signal is obtained when T_1 relaxation is complete before the next scan comes

18

T₁ RELAXATION: IMPORTANT FACTORS

- ⋆T₁ relaxation must be facilitated by some energy source
 - + Magnetization is very difficult to relax by itself "fluctuation" is necessary
 - × Unlike the pulp in orange juice or the electrons in UV/Vis
 - x More like apples on the tree: you have to shake or kick the tree to fell the apple!
 - \times T₁ of a rigid organic solid sample could be > 1000 s
- Two factors drive T₁ relaxation:
 - + Strength of dipolar coupling between the nuclei
 - + Rate of fluctuation of the interaction (<u>a steady push on the apple tree won't work</u>)

19

19

CONCEPT REVIEW

- What are the three basic components of a NMR experiment? How is it similar to the "watermelon tapping" experiment?
- What effect does a pulse generate to a magnetization?
- What are the strengths and shortcomings of the three theoretical models of NMR?
- Why do magnetic interactions generate broadening of NMR peaks? Use Larmor Equation to explain
- ★ If you double the length of a 90° pulse, how should you call this new pulse? Why?
- A powder pattern is a strange-looking horned pattern. Why?
- For a molecular dynamical process, what is the relationship between its rate and correlation time? How do they respond to increase of temperature, respectively?

CONCEPT REVIEW

- * How wide is a typical ¹H spectrum of a rigid polymer? What factor determines this peak width? At increasing temperature, how would the spectrum change? What is the mechanism?
- ★ Why does T₁ relaxation affect signal intensity?
- How does T₁ of a rigid polymer sample change when you heat it up?
- What molecular processes generate the fluctuation of force that drives T₁ relaxation?

21